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Abstract. Microstructure evolution, where grain boundaries evolve by mean curvature motion, is

modeled in three dimensions (3-D) using Gradient Weighted Moving Finite Elements (GWMFE). To do

this, we modify and extend an existing 2-D GWMFE code to create a new code GRAIN3D which makes

possible the 3-D microstructure modeling. Extensions include equations for the motion of tetrahedra that

are conformally attached to the moving piecewise linear triangular facets which represent the GWMFE

discretization of the evolving grain boundaries. The right-hand side term which drives the GWMFE

motion can be viewed as arising from a desire to minimize an energy per unit area � on the triangular

interfacial grid. Accordingly, new regularization terms (which improve the e�ciency of the simulation) are

presented as arti�cial energy densities �reg << � on the interfacial mesh. New capabilities for changing

the mesh topology are used to keep the computation at a uniform level of accuracy and to mimic actual

changes in the physical topology, such as collapse and disappearance of individual grains. Validating runs

are performed on some test cases that can be analytically solved, including collapse of a spherical grain

and the case of columnar microstructure. In the spherical collapse case, the GWMFE method appears to

have an error in the surface area collapse rate �dA
dt

which is O((��)2), where �� is a measure of the

angular resolution of the mesh. Finally a run is presented where a true 3-D microstructure (possessing

triple lines and quadruple points in the interior and triple points on the exterior boundaries) is evolved to

a \2-D" columnar microstructure and �nally evolved down to a single grain.

Key words. microstructure evolution, motion by mean curvature, gradient-weighted moving �nite

elements, unstructured tetrahedral meshes, deforming grids, changing grid topology, front-tracking.

AMS subject classi�cations. 65M60, 51P05, 73S10, 65M50.

1. Introduction. Under close examination, a sample of metal (such as copper or
aluminum used in semiconductor manufacture) possesses a microstructure wherein the
sample is decomposed into separate grains. The atoms in individual grains exist in a
crystal lattice and the lattice orientations of adjacent grains di�er. The boundary surfaces
between grains are thus areas of lattice misalignment and e�ectively possess an excess
energy per unit grain boundary area. In the simplest approximation, this excess energy
density is a constant � per unit area for all grain boundaries. When the sample is heated,
the grain boundaries become mobile and grain growth takes place. The motion resulting
from the desire to minimize surface energy is mean curvature motion where the normal
velocity of a point on a grain boundary is proportional to the mean curvature at that point
[14]. Thus the grain boundaries move as if they are under the inuence of a driving force
proportional to the mean curvature, with motion opposed by a frictional force proportional
to normal velocity (as if the grain boundaries are immersed in a uniform, isotropic viscous
medium).

Approaches to mean curvature motion and/or grain growth modeling have included
2-D front-tracking models [4], Surface Evolver|a popular energy gradient descent method
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[1], level sets [17], vertex methods [5],[8] and Gradient-Weighted Moving Finite Elements
[2],[3],[11]. 2-D front tracking models have been the workhorse of grain growth modeling|
they have been used in many research articles, and are particularly successful in the case
of thin �lms, where the microstructure is for the most part columnar. Surface Evolver is
a widely used code available over the web which allows the user to interactively reduce
the surface energies of arbitrary surface con�gurations. Constant surface energy leads to
mean curvature motion, but much more general energies and motions are possible. The
method uses an explicit step where mesh points are advanced along either the energy
gradient descent direction or the conjugate gradient direction. Level set methods have the
advantage of automatically resolving certain types of topological changes that occur during
grain evolution such as \self-pincho�" where a single grain divides into two or more grains.
However, when three or more grains intersect at a point (\triple" or \quadruple" point) or
on a curve (\triple line"), the standard level set formulation fails and a nontrivial increase
in algorithmic complexity is necessary to correctly model the evolution of these points of
intersection [16],[18]. Vertex methods consider points of maximum grain intersection (triple
or quadruple points) and assume the curves between these points are straight lines. These
methods may produce valid statistical results on large collections of grains, but cannot
hope to compute detailed grain shapes.

Moving Finite Elements (MFE) [10],[12] is a standard Galerkin �nite element method
of computing the solution u(x; t) of a time-dependent partial di�erential equation (PDE)

ut = F (x; t; u;ru; : : :);
with the additional novel feature that the Galerkin formalism is used to compute do-
main velocities for the computational grid points in addition to determining the time
derivative of u at the grid points. Because this method would frequently over-concentrate
computational nodes in the steep portions of the graph of u, it was necessary to devise
Gradient-Weighted Moving Finite Elements (GWMFE) which de-emphasized the impor-
tance of node placement in high-gradient regions by multiplying the PDE residual by the
gradient-weighting factor 1p

1+jruj2
� 1. It turns out that GWMFE can be viewed as

a non-weighted method when the independent variables are taken to be the parametric
coordinates of the graph of u. That is, the explicit gradient-weighting factor drops out
and the method can be viewed as simply Galerkin �nite elements with respect to paramet-
ric surface coordinates. GWMFE is thus a very natural way to compute mean curvature
motion, and some examples are given in [11] (1-D, evolving curves) and [3] (2-D, evolving
surfaces).

Recently, we took the 2-D version of GWMFE used in [3], which represents evolv-
ing surfaces by piecewise linear triangular elements, and incorporated it into a new code
GRAIN3D which extended its capabilities so that general microstructure evolution could
be simulated. Speci�cally, a program called LaGriT [7] was used to produce 3-D models of
metallic microstructure which consisted of a domain 
 � IR3 partitioned into grains, each
of which were composed of hundreds of tetrahedra. The triangular interfaces between the
grains were extracted from the 3-D model and evolved by GRAIN3D using the GWMFE
algorithm. Additional equations of motions were devised for the \extra" vertices in the
3-D model that were interior to the grains and not on the grain boundaries. Motions were
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determined solely by the requirement that the tetrahedra remain well-shaped (i.e., have a
low aspect ratio) as the surfaces to which they are conformally attached deform under mean
curvature motion. Finally, grid topology-change software was written to maintain to some
degree a roughly constant spacing between grid points as the mesh deforms, and to make
possible physically signi�cant topology changes, such as the collapse and disappearance of
certain grains during the course of evolution.

The new capability of supporting a system of tetrahedra that are conformally attached
to the moving triangular surfaces will be crucial in the future when we use these volume
elements to compute ambient quantities throughout 
 (such as temperature). This will
allow more detailed simulations where � is not assumed constant. (Note, for example, that
� in fact strongly depends on temperature [14].)

In section 2, we review GWMFE from a parametric viewpoint. We present a detailed
derivation of how the GWMFE \right-hand side" integral involving curvature is evaluated
and show that this integral can be seen as a gradient of an energy per unit area � on
the discretized interfaces. In section 3, we review regularization terms necessary for the
GWMFE method to work e�ciently, and we introduce new right-hand regularization terms
from the point of view that they represent an arti�cial energy per unit area �reg << �. In
section 4, we introduce additional equations for moving tetrahedra conformally attached
to the GWMFE triangular interface mesh. In section 5, we touch on grid maintenance
operations necessary to keep the accuracy of the computation uniform. In section 6, we
describe \recoloring " operations necessary to perform important topological changes in
the microstructure simulation, such as the collapse and disappearance of individual grains.
In section 7, we compare numerical solutions computed by GRAIN3D to analytic solutions
for the cases of spherically symmetric grain collapse and columnar microstructures. In
section 8, we show a numerical example where GRAIN3D evolves a truly three-dimensional
microstructure.

2. Mean Curvature Motion and GWMFE.

2.1 Review of Method. We use Gradient-Weighted Moving Finite Elements
[2],[3],[11] to move a multiply-connected network of piecewise linear triangles for the mod-
eling of deformation of 3-D grains. In one model of metallic grain growth [14], interface
surfaces obey the simple equation

vn = �K;

where vn is the normal velocity of the interface, K is the curvature, and � is called the
mobility. K is the sum of principle curvatures; i.e., twice the mean curvature. In this paper,
we assume the mobility is constant|i.e., it does not depend on the choice of materials on
either side of the interface, nor does it depend on the orientation of the interface. We
represent interfaces as parametrized surfaces:

x(s1; s2) =
X

nodes j

�j(s1; s2)xj :

Here, (s1; s2) is the surface parametrization, the sum is over the N interface nodes,
�j(s1; s2) is the piecewise linear basis function (\hat function") which is unity at node
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j and zero at all other interface nodes, and xj = (x1j ; x
2
j ; x

3
j ) 2 IR3 is the vector position

of node j.
We have that

_x(s1; s2) =
X
j

�j(s1; s2) _xj ;

is the velocity of the surface at the point x(s1; s2) (based upon linear interpolation of node
velocities) and

vn = _x(s1; s2) � n̂ (n̂ is local surface normal):

So

(2:1) vn =
X
j

(n̂�j) � _xj :

In e�ect, we have that the 3N basis functions for vn are nk�j, where n̂ = (n1; n2; n3). These
basis functions are discontinuous piecewise linear, since the nk are piecewise constant.

The Gradient-Weighted Moving Finite Element method is to minimize

(2:2)

Z
(vn � �K)2 dS

over all possible values for the derivatives _xi. (The integral is over the surface area of the
interfaces.) We thus obtain

0 =
1

2

@

@ _xki

Z
(vn � �K)2 dS; 1 � k � 3; 1 � i � N

=

Z
(vn � �K)nk�i dS:

Using (2.1), we obtain a system of 3N ODE's:� Z
n̂n̂T�i�j dS

�
_xj =

Z
�Kn̂�i dS;

or

(2:3) C(x) _x = g(x);

where x = (x11; x
2
1; x

3
1; x

1
2; : : : ; x

3
N )

T = (x1;x2; : : : ;xN )
T is the 3N -vector containing the x,

y, and z coordinates of all N interface nodes, C(x) is the matrix of inner products of basis
functions, and g(x) is the right-hand side of inner products involving surface curvature.
Since n̂n̂T is a 3� 3 matrix, it is clear that C(x) has a 3� 3 block structure.

The ODE's are solved with an implicit backwards di�erence variable time-step ODE
solver [2]. We use generalized minimal residual (GMRES) iteration with block-diagonal
preconditioner to solve the linear equations arising from the Newton's method, as opposed
to the direct linear solver used in [2]. The ODE's are scaled so that the variation of the xkj
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values is O(1) and the truncation error � (i.e., the maximum acceptable estimated error
made in the xkj every time step) is typically set to 10�3.
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Figure 3. De�nition of quantities

around node i, triangle k.

2.2 Evaluation of Right-Hand Side Curvature Term. The right-hand side term
due to curvature, Z

�Kn̂�i dS;

requires special consideration because on a piecewise linear manifold K is actually a distri-
bution which is zero in the interiors of the triangles and in�nite on the edges. Evaluation
of this term is undertaken by mollifying (smoothing) the manifold in a small neighbor-
hood (within a small distance �) of the edges and then showing that

R
Kn̂�i dS on the

�-molli�ed manifold tends to a limit as � ! 0 which is independent of the molli�cation
process. Indeed, referring to Figure 1, we consider one of the edges e emanating from
node i and we let sjj be the arclength parameter running parallel to the edge and s? be
the arclength parameter corresponding to movement on the manifold perpendicular to the
edge. The length of the edge is Le. In Figure 2, we show the intersection of the surface
with a plane orthogonal to the edge e. The intersection yields a smoothed curve (due to
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the molli�cation of the surface). We assume the molli�ed region runs from s? = �� to
s? = +�. The intersection curve has tangent t̂(s?) which varies smoothly between t̂(��)
and t̂(+�). n̂(s?) is the normal to the surface, which smoothly varies between n̂(��) and
n̂(+�). We de�ne û, v̂ to be unit vectors in the plane with û � v̂ = ê (the unit vector
parallel to e). � is de�ned as the angle that t̂(s?) makes with û. Now we writeZ

�Kn̂�i dS = �
X

edges e
with i2e

Z Le

0

�Z �

��

Kn̂�i ds?

�
dsjj

� �
X

edges e
with i2e

�Z Le

0

�i(sjj) dsjj

��Z �

��

d�

ds?
n̂ ds?

�

That is, the right-hand side curvature inner product at node i is the sum of contributions
from edges e incident on i. In the 2�-wide strip near edge e, �i(sjj; s?) is nearly a piecewise
linear function of only sjj which is 1 at sjj = 0 and 0 at sjj = Le. This means that the �rst
integral evaluates to 1

2Le. The curvature K of the molli�ed surface is d�
ds?

since there is

no curvature parallel to edge e in the unmolli�ed surface (and hence no curvature in this
direction for the molli�ed surface as well). Now

Z �

��

d�

ds?
n̂ ds? =

Z �(�)

�(��)

n̂ d�

=

Z �(�)

�(��)

(� sin �û+ cos �v̂) d�

= cos �û + sin �v̂

����
�(�)

�(��)

= t̂(�) � t̂(��)
So we obtain as � ! 0 thatZ

�Kn̂�i dS = �
X

edges e
with i2e

1

2
Le(̂t

(1)
e + t̂(2)e );

where t̂
(1)
e , t̂

(2)
e are unit normals in the piecewise linear surface which are both orthogonal

to e. t̂
(1)
e points into one triangle sharing e, and t̂

(2)
e points into the other triangle sharing

e. Now we can rewrite this sum as a sum over the triangles incident on i:Z
�Kn̂�i dS = �

X
triangles k
with i2k

1

2

�
L
(1)
k t̂

(1)
k + L

(2)
k t̂

(2)
k

�
;

where for each triangle k, L
(1)
k is the length of one of the edges bordering k that contains

i, t̂
(1)
k is the inward normal to that edge, and L

(2)
k , t̂

(2)
k are the corresponding quantities

for the other edge. (See Figure 3.)
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Interestingly, since
P3

j=1 L
(j)
k t̂

(j)
k = 0 (again see Figure 3 for the de�nition of L

(3)
k ,

t̂
(3)
k ), we have Z

�Kn̂�i dS = ��
X

triangles k
with i2k

1

2
L
(3)
k t̂

(3)
k

= �rxi

 X
triangles k
with i2k

�Ak

!
;

where Ak is the area of triangle k. If we attribute an energy of � per unit area to the
surface, then this becomes

(2:4)

Z
�Kn̂�i dS = �rxiE;

where

(2:5) E =
X

triangles k

�Ak

is the total energy of the surface. This shows that the node-concentrated \right-hand side
forces" are derivable from an assumed surface density of � per unit area of our GWMFE
manifold. This mirrors the physical model where mean curvature motion was derived under
the assumption that the mechanismof grain growth is minimization of excess surface energy
proportional to �.

To alleviate certain numerical di�culties experienced by GWMFE, we will add tiny
regularization forces to equation (2.3). The regularization forces added to the right-hand
side will be derivable from an arti�cial surface energy density (say �reg). This allows us
to conveniently estimate fractional error in normal surface velocity to be on the order of
�reg
�
, the fractional error in energy density which drives the node motion.

We note here that the form (2.4)-(2.5) for the right-hand side PDE driving termsmakes
conceivable computations where � = �(n̂)|that is, where � depends on the direction of
the normal at the surface. In this case, one need only loop through triangles in the mesh
and evaluate the quantities (2.4)-(2.5) using the orientation-dependent �. If � depends
strongly on n̂, faceting of the surface can occur [6].

3. Regularization. In [11] it is shown how (2.3) represents a balance of forces on the
moving GWMFE surface. The right-hand side represents driving forces from the PDE, and
the left-hand side represents viscosity forces that resist these driving forces; all these forces
are taken to be concentrated at the nodes. In practice, certain grid con�gurations can
cause C(x) to be nearly singular, so that there exist essentially undamped node motions
that lead to chaotic grid behavior and loss of time step. To alleviate this, Carlson and
Miller added a term (a left-hand side \regularizing force") that was of the form C1(x) _x,
so that the total matrix (C+C1)(x) was positive de�nite.

In addition certain grid behaviors are possible, such as the collapse of a triangle to a
point, which have no physical signi�cance (i.e., which do not a�ect the shape of the surface),
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but which cause a catastrophic loss of time step and run termination. To alleviate these
problems, small regularizing forces are added to the right-hand side of (2.3). The form of
these forces di�ers from those used in [3].

3.1 Left-hand side Grid Viscosity Forces. Suppose a node i and its neighboring
nodes are all nearly coplanar. More precisely, suppose that there exists a plane P (spanned
by û and v̂) such that xi and each member of fxj j nodes i and j share an edgeg have
normal distance � � to this plane. Then, since the local truncation error tolerance is �,
computationally this situation is indistinguishable from the case where xi and all the xj
exactly lie in the same plane. In this case, it is apparent that one could alter _xi by some
in-plane velocity aû + bv̂ without altering the shape of the surface in the neighborhood
of node i. Since (2.3) is derived from (2.2) which is a minimization which is una�ected
by these additional node motions for node i, we conclude that C(x) nearly annihilates
the two-dimensional subspace corresponding to the in-plane motions of node i. If this
degeneracy or near-degeneracy is not remedied, the motion of node i will not be smooth,
if it is de�ned at all, and the time step will decrease greatly.

To remedy this, we add the small grid viscosity force

(3:1) �1

�Z
I3(rs�i � rs�j) dS

�
_xj � C1(x) _x

to the left-hand side of (2.3). Here I3 represents the 3� 3 identity matrix, which indicates
that grid viscosity is isotropic in that it treats independently and identically the x, y, and z
components of the velocities _xj. �1 is a small number, and the gradient rs is with respect
to the tangential coordinate system of the surface. We now show (3.1) is equal to

(3:2) �1r _xi

1

2

Z
jjrs _xjj2 dS:

Here r _xi
is the gradient with respect to the node velocity _xi and _x =

P
_xj�j(s) is inter-

polated grid velocity. rs _x is the gradient with respect to surface measure of interpolated
grid velocity and hence it is a 3 � 2 matrix. jjrs _xjj2 is the sum of squares of the six
components (i.e., the Froebenius norm). To show (3.2), we have that

r _xi

1

2

Z
jjrs _xjj2 dS = r _xi

1

2

Z ����rs

X
k

_xk�k
����2 dS

= r _xi

1

2

Z X
k

X
j

( _xk � _xj)(rs�k � rs�j) dS

=

Z X
j

_xj(rs�i � rs�j) dS

=
X
j

�Z
I3(rs�i � rs�j) dS

�
_xj:

Thus, our regularization force is, for each node, the velocity gradient of a velocity potential
and the e�ect of this force is to reduce

R jjrs _xjj2 dS, a measure of the nonuniformity of
the interpolated velocity �eld.
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Using arguments in [2], �1 is chosen in the range

(3:3) :25�2 � �1 � 25�2;

so that the e�ect of the regularization term dominates only when xi and the neighboring xj
are within � of an exact plane. If the graph is not nearly planar in this sense, the left-hand
side will be dominated by C(x) _x which represents viscous node resistance arising from the
minimization principle (2.2).

3.2 Right-hand side Triangle Quality Force. Minimization of (2.2) does not
prevent the collapse triangles in the moving grid; if triangle collapse (i.e., shrinking to
zero of inscribed radius) is allowed to occur, the numerical run will have to be terminated.
To prevent triangle collapse, a right-hand side regularizing \quality force" is added of the
form

(3:4) ��2rxiQ
tri;

where Qtri is a dimensionless \quality energy":

(3:5) Qtri =
X

triangles k

Qtri
k =

X
triangles k

�
(L

(1)
k )2 + (L

(2)
k )2 + (L

(3)
k )2

Ak

�2
;

where the L
(i)
k are edge lengths for triangle k, and Ak is the area. Qtri

k has a minimal value
of Qtri

regular
= 48 for a regular triangle and gets larger as the aspect ratio of the triangle gets

larger. I.e., poorly shaped triangles have poor quality and a large quality energy. Qtri
k is

dimensionless and is thus independent of the scale of the triangle k. However, the force
�rxiQ

tri
k is not scale invariant and its magnitude increases as the scale is decreased. We

can thus choose �2 to be equal to a value such that �rxiQ
tri
k dominates for small triangles

with inscribed radius � �. This will prevent triangle collapse. Indeed, for triangle p,

�rxi�2Q
tri
p = �rxi

Z
�2
Qtri
p

Ap

dS:

We wish this force to be comparable to the \physically justi�ed" driving force arising from
the PDE, �rxi

R
� dS: Assuming for simplicity that the small triangle p is regular, we note

that the arti�cial surface energy density due to the triangle quality force is �2 � �2
Qtri
k

Ak
.

Suppose we arrange this to be equal to � if the inscribed radius of p is �. Then

(3:6)

�2 =
Ap

Qtri
p

�

� 3
p
3�2

48
�

� 0:1�2�:
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This is only a rough calculation, because arrangement of � = �2 does not imply
�rxi

R
� dS = �rxi

R
�2 dS. That's becauserxi�2 6= 0, so that we really should arrange

�rxi

R
� dS = ��2rxi

R
dS�R �rxi�2

�
dS, rather than simply � = �2. However one can

show that j R �rxi�2
�
dSj and j�2rxi

R
dSj are of the same order, so that (3.6) usually

gives a reasonable order of magnitude estimate for �2. In practice, �2 is chosen to be
somewhat less than the estimate (3.6) since choice of �2 (and of the other regularization
coe�cients �i in this paper) is not critical and we can err on the side of introducing less
arti�cial regularization forces.

3.3 Right-hand side Perimeter-Dependent Surface Energy. The opposite of
grid collapse is excessive stretching of triangular elements. If edges exceed a certain max-
imum acceptable edge length hmax, then the GWMFE method is running on too coarse
a discretization, degrading accuracy of the results. Even if the initial grid has all edges
� hmax in length without explicit intervention, it is quite possible that some edges exceed
hmax in length after some grid evolution. To discourage excessive grid stretching, we add
a right-hand side surface energy that is proportional to the perimeter of the triangles:

(3:7)

�rxi�3E
perim = �rxi

 
�3

X
triangles k

Eperim
k

!

= �rxi

 
�3

X
triangles k

(L
(1)
k + L

(2)
k + L

(3)
k )Ak

!
:

This corresponds to an arti�cial energy density �3 � �3pk, where pk = L
(1)
k + L

(2)
k + L

(3)
k

is the triangle perimeter. This force grows in strength as the perimeter gets large, and
thus excessive stretching of individual elements will be avoided. Since it is highly likely
that most edges will be near hmax in length, the arti�cial energy density will be constantly
a�ecting the solution, introducing errors throughout the grid. (This is as opposed to the
triangle quality force which will only a�ect the solution near \hot spots" where the grid
has elements nearing collapse.) Errors in surface velocities due to (3.7) will be roughly
O(�3=�) throughout the grid, so we want this quantity to be less than some tolerance. On
our O(1) grid, � represents a tolerance on fractional error in node position. It is reasonable
to also take this as fractional error in surface velocity, and so using �3 � �3(3hmax), we
obtain

(3:8) �3 <�
��

3hmax
:

4. Enlargement of System to Move Noninterface Nodes. System (2.3) is
integrated using a second-order implicit variable time step ODE solver [2]. However, it

gives velocities of the interface nodes only

�
_x = ( _xkj )

;1�k�3

;1�l�N

�
, and so the system must be

enlarged to include velocities for M interior nodes that are not part of the interface. That
is, we extend x to

x =

�
xinterface
xinterior

�
;
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where xinterface = (xkj )
;1�k�3

;1�l�N
, and xinterior = (xkj )

;1�k�3

;N+1�l�N+M
. With this extension, we

enlarge system (2.3) to be order N +M .
Since interface physics only tells us how to evolve the N interface nodes, we must

\arti�cially" construct the extra elements in the enlarged C(x), g(x) to allow for orderly
(tetrahedra orientation preserving) evolution of the mesh. That is, given a physically
meaningful method of evolving the triangular interfaces, we are free to develop auxiliary
equations for moving the tetrahedra (some of which are conformally attached to the tri-
angular interfaces) with the only requirement being that these equations lead to e�cient
solution of the system (2.3), and that they maintain positive orientation of tetrahedra.

A natural choice for the additional equations is to generalize the left-hand side regular-
ization force (3.1) to viscously damp volume grid motions, and to generalize the right-hand
side quality force (3.4-3.5) to seek well-shaped tetrahedra.

4.1 Volume Grid Viscosity Force. To the left-hand side of (2.3), we add the
following contribution:

(4:1) �4

�Z
I3(r~�i � r~�j) dV

�
_xj � C4(x) _x:

Here, r~�j = r~�j(x) is a piecewise linear \hat function" de�ned for x 2 IR3. ~�j is 1 on
the j'th node in the tetrahedral mesh, and zero on all other nodes. r~�j is the gradient
of ~�j over the tetrahedra (i.e., r = rx, where x 2 IR3.) The integral is taken over the
whole volume domain 
 � IR3 which has been partitioned into tetrahedra. This is a
generalization of the surface grid viscosity term (3.1). Similar to (3.1)-(3.2), (4.1) is easily
seen to be equal to

(4:2) �4r _xi

1

2

Z
jjr _xjj2 dV;

where _x =
P

j _xj ~�j(x) is interpolated volume mesh velocity. As in the case of surface grid
viscosity, the a�ect of (4.1) is to reduce nonuniformities in volume grid velocity. So, for
example, if a collection of noninterface nodes were connected to a set of interface nodes all
moving at constant velocity a, the solution of the system

C4 _x = 0

_xi = a at interface nodes

would be _x = a at noninterface nodes as well. This is clear, since in this case
R jjr _xjj2 dV

is zero and is thus minimized.
To choose a suitable value for �4, we compare (3.1) and (4.1) and arrange for these

terms to be roughly of the same order. Suppose node i is on the interfacial triangular
network. We choose �4 so that the diagonal elements of the matrices C1 and C4 are
roughly the same. That is

�4

Z
r~�i � r~�i dV � �1

Z
rs�i � rs�i dS:

11



If we assume that the altitudes of the volume elements sharing node i are about the same
magnitude as the altitudes of the surface elements sharing node i, then the integrands of
the two integrals are roughly the same. Thus we should have

�4 � �1

Z
rs�i � rs�i dS

�Z
r~�i � r~�i dV

� �1

Z
jx�xij�h

dS

�Z
jx�xij�h

dV

=
3

4

1

h
�1;

where h is the length of a typical edge in the mesh near node i. We approximate h by
hmax, since in practice many edges are at (or near) the longest allowed edge length in the
computation. Thus, using (3.3), we arrive at the guideline,

(4:3) :2�2
�
hmax � �4 � 20�2

�
hmax:

4.2 Volume Quality Force. Similar to Section 3.2, to prevent tetrahedral collapse
and inversion as the mesh evolves, to the right-hand side of (2.3) we add the tetrahedral
quality force

(4:4) ��5rxiQ
tet;

where Qtet is the dimensionless \quality energy"

(4:5) Qtet =
X
tets p

Qtet
p =

X
tets p

P6
n=1(L

(n)
p )2

P4
n=1(A

(n)
p )2

V 2
p

;

where the L
(n)
p are the edge lengths, the A

(n)
p are the face areas, and Vp is the volume

of tetrahedron p. Qp is a dimensionless quality measure which has the minimal value
Qtet

regular
= 324 if p is a regular tetrahedron, but approaches in�nity if p has a worsening

aspect ratio. We note that Qtri
p (3.5) and Qtet

p are both equivalent to jjLjj2
2
jj 1
H
jj2
2
, the

square of the l2 norm of the edge lengths of the element multiplied by the square of the l2
norm of the inverse altitudes of the element. They are thus dimensionless element quality
measures which are extremely smooth (i.e., require no square root evaluations).

The argument for setting �5 is similar to that for setting �2. Suppose one face q of
a nearly collapsed tetrahedron p is on an interface. Suppose node i is on this face. We
choose �5 so the force on this node due to the quality force begins to dominate for small
tetrahedra with inscribed radius � �. Now for tetrahedron p,

�rxi�5Q
tet
p = �rxi

Z
face q

�5
Qtet
p

Aq

dS:
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We wish this force to be comparable to the \physically justi�ed" driving force arising
from the PDE, �rxi

R
� dS: Let's assume for simplicity that the collapsing tet is close to

regular. Then we wish that �5 � �5
Qtet
p

Aq
is equal to � if the inscribed radius is �. Thus

(4:6)

�5 =
Aq

Qtet
p

�

� 6
p
3�2

324
�

� 0:03�2�:

Since this is only an order of magnitude estimate, in our computational runs we used
somewhat smaller values for �5.

4.3 Tetrahedron Lock-Up. The grid forces acting on tetrahedra move the grid
by (1) acting to minimize nonuniformities in grid velocity, and (2) acting to continually
improve grid element aspect ratios. The arti�cial grid forces have the e�ect of necessarily
overriding physically justi�ed node movement when it is necessary to prevent inversion of
tetrahedra. For instance, if a tetrahedron p has all 4 nodes on an interface, the motion
given by (2.3) might cause the tetrahedron to invert, especially if the interface changes its
sense of curvature. By adding the \quality force" (4.4-4.5), the tetrahedron will \lock up"
at close to inscribed radius � and will be prevented from inverting. The e�ect of this on
the simulation is acceptable with regard to accuracy, since the \lock up" of a small number
of tetrahedra simply removes a small fraction of numerical degrees of freedom from the
simulation. The e�ect is further reduced if the locked up tetrahedra are e�ectively removed
by merge and swap operations mentioned in the next section.

4.4 Equation Summary. After adding regularization and tetrahedral dynamics
terms to (2.3), the complete system of ODE's that we solve in our implementation of
GWMFE is

(4:7)

�Z �
n̂n̂T�i�j + I3�1(rs�i � rs�j)

�
dS +

Z
I3�4(r~�i � r~�j) dV

�
_xj

=

Z
�Kn̂�i dS � rxi(�2Q

tri + �3E
perim + �5Q

tet) ; 1 � i � N +M:

Here the system has been written as N+M 3-vector equations, one associated with each of
the N interface nodes and M interior nodes. The left-hand side is an implied sum over all
the nodes j in the mesh. The \arti�cial" terms involving �1; : : : ; �5 and guidelines for setting
�1; : : : ; �5 are explained in (3.1),(3.3),(3.5-3.8),(4.1),(4.3),(4.5-4.6). For the left-hand side,
if either i or j is not an interface node, then the surface integral is not de�ned and does
not contribute to the left-hand side. On the right-hand side of (4.7), if i is not an interface
node, then only the term involving Qtet is de�ned and contributes to the right-hand side.

5. Grid Maintenance Operations. As the surfaces move and grains deform, mesh
maintenance and mesh optimization tools are used to assure good element quality and to
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assure grid edges do not stretch beyond the allowable maximum length hmax. Primitive
grid operations provided by periodic calls to LaGriT, the Los Alamos Grid Toolbox [7],
provide a basis for mesh maintenance and optimization. The \merge" primitive accepts
as input lists of pairs of neighboring nodes: merge candidate nodes and survivor nodes. If
the merge is completed, only one of the pair survives and the mesh connectivity is repaired
to reect that one node has been deleted. Before the merge takes place, LaGriT veri�es
that the merge will not cause tetrahedra to become inverted and that the node types
and surface constraints of the survivor and merged nodes will lead to a legal merge. The
\re�ne" primitive used in these simulations adds nodes at the midpoints of selected edges.
LaGriT sets the node type and surface constraints of the added nodes by determining if
the added node is in the interior, on a material interface or on an exterior boundary. The
grid connectivity is repaired to include the new elements created by connecting the new
node to the other vertices of the elements which contained the re�ned edge. Depending
on what is desired by the user, the \recon" primitive swaps connections to either improve
a measure of the geometric quality of the elements [closely related to Qtet

p in (4.5)], or to
maximize the number of elements satisfying the familiar \Delaunay" criterion.

The three primitives, \re�ne", \merge", and \recon" are combined into the LaGriT
grid optimization operation called \massage". (\Massage" is similar to the algorithm pre-
sented in [9].) \Massage" accepts three arguments: a creation edge length, an annihilation
edge length and a damage tolerance. (In our numerical runs, we set these three tolerances
to :3, :3, and :01 respectively.) Re�nement is carried out such that no edge in the grid
has length greater than the creation edge length. The \re�ne" primitive is invoked using a
version of an algorithm due to Rivara [15]. In the algorithm, an edge marked for re�nement
is placed on a stack. The algorithm then checks that the elements containing the marked
edge have no other edges longer than the marked edge. If longer edges are encountered,
they are placed on the stack ahead of the marked edge. The process continues recursively.
The re�nement candidates are then popped o� the stack and re�ned, resulting in a re�ne-
ment pattern proceeding from the longest edges to the shortest; this pattern is desirable
since it usually does not degrade element quality. \Massage" may attempt to \merge"
pairs of points only if the resulting grid has no edge length greater than the annihilation
length. The damage tolerance speci�es the amount of change to the shape of a material
interface that is permissible. If a node that sits on a material interface is merged out, the
interface will become atter at that point. If the distance from the merged node's original
position to its projected position on the attened interface is greater than the damage
tolerance, the merge will not be allowed. Since \merge" and (less commonly) \re�ne" can
produce poorly shaped tetrahedra, \recon" is used to restore well shaped elements.

6. Mesh Response to Grain Topology Changes: Recoloring. As grain bound-
aries move, topology changes must be detected and the mesh must be modi�ed to reect
these topological changes. The topology changes are detected by assembling and moni-
toring the rate of change of sets of topological components. To detect grain collapse, we
assemble sets of connected elements of the same material; for interface surface collapse we
assemble sets of connected interface triangles between two materials; for boundary surface
detachment, we assemble sets of connected boundary triangles that lie on a given boundary
surface; for triple line collapse where a line is surrounded by three or more materials, we
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assemble sets of connected edges. We monitor the rate of collapse of these sets, and when a
collapse or detachment is imminent, the mesh is adjusted. We identify a neighborhood that
completely surrounds the collapsing feature and assign a new material to the elements in
this neighborhood. We refer to this as \recoloring". Ideally, the encroaching material that
is accumulating most rapidly is chosen to be the new material, but in this �rst version of
our algorithm, the new material is chosen randomly from a list of viable adjacent materials.
Soon after the material reassignment, the curvature driven interface motion will e�ectively
straighten the interfaces. Figure 4 is a schematic of three types of topological change. The
�rst frame in each sequence shows the event as it is detected by GRAIN3D; the dotted
line demarcates the neighborhood to receive a new material assignment. The second frame
shows the mesh just after the material reassignment, and the third frame shows the mesh
after the interfaces have straightened. A further topological change, \self-pincho�" where
a grain intersects itself and splits into two pieces, is yet to be incorporated in GRAIN3D.

Figure 4. Topological collapse detection and resolution by GRAIN3D.
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7. Comparison Against Known Solutions. To gauge the accuracy of the
GWMFE method, we set up two types of test cases with analytically known collapse
rates: spherical collapse and columnar grains.

7.1 Spherically Symmetric Collapse. The collapse of a spherical grain is easily
solvable analytically and provides our �rst test of the accuracy of GWMFE. Assuming that
a sphere is collapsing with normal velocity equal to the curvature (i.e. sum of principle
curvatures), we have

dr

dt
= K = �2

r
:

So
dA

dt
=

d(4�r2)

dt

= 8�r
dr

dt
= �16�:

The rate of change of surface areas is thus constant and is thus a convenient quantity to
use for comparison with a numerical GWMFE solution. In Figure 5 we show the initial
grid for a 42-node polyhedral representation of the sphere and then at t = 0:04: In Figure
6, we do the same for a 162-node sphere. The highest resolution case of a 642-node sphere
is not shown. For each case, the triangles on the surface of the sphere are visible. Edges
from tetrahedra conformally attached to the outside of the sphere are visible as well . Of
course, tetrahedra within the sphere are not visible. Each surface point on the sphere is
placed at exactly radius 0:5. We ran the code with � = 1, � = 10�3, hmax = 0:3, �1 = 5�2,
�2 = 10�4�2�, �3 = 10�3�

�
hmax, �4 = 5�2

�
hmax, and �5 = 10�4�2�. In Figures 7-9 we

display results for these cases showing computed graphs of dA
dt

vs. t and A vs. t (each
dot signi�es a time step) and compare them against the analytical results. Note that we
apparently converge to the correct �dA

dt
as the number of nodes is increased. Also note

that at t = 0, each numerical solution starts with a surface area less than the exact area �
due to the atness of the triangular facets. As can be seen, this initial surface area de�cit
is essentially maintained unchanged as the sphere collapses. Hence, errors introduced by
the numerical solution seem to be less than errors introduced by simply discretizing the
initial condition!

Of course, near the terminal time t = �
16� = 0:0625, we have that the numerical

solution for these three cases deviates from the analytic solution. Near the terminal time,
the tetrahedra inside the sphere have been collapsed to inscribed radius approaching � and
the tetrahedral quality force (4.4-4.5) takes over and stops the collapse. If this were a grain
growth simulation run, the topology change software would have recolored the collapsing
tetrahedra to the color of the surrounding medium close to the terminal time. But by
turning o� the recoloring algorithm, we are able to see how the tetrahedral quality force
eventually will dominate if no corrective topological change is taken.

To get a better idea of the accuracy of the pure GWMFE method without regulariza-
tion, we reran these three cases with � = 1, � = 10�3, hmax = 0:3, �1 = :001�2, �2 = 0,
�3 = 0, �4 = :001�2

�
hmax, and �5 = 0, which represent zero right-hand side regularization
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forces and left-hand side internodal viscosities far smaller than recommended. We plotted
�dA

dt
for these three cases, against the theoretical collapse rate in Figure 10. These simu-

lations abruptly end when the terminal time is reached in the absence of counterbalancing
tetrahedral quality forces. It is apparent from this �gure that the error in �dA

dt
is constant

over each run, and that the error is cut by roughly a factor of 4 when one increases the
number of nodes from 42 (Case 1) to 162 (Case 2), and then the error drops by a factor of
four when the number of nodes is increased again from 162 to 642 (Case 3). Since Case 2
represents a re�nement which reduces by a factor of two the spacing h between nodes on
the initial polyhedron (as compared to the 42-noded polyhedron of Case 1), and since Case
3 represents a further re�nement and halving of h, it is tempting to say the error in �dA

dt

as computed by the pure GWMFE method is O(h2). However, as t ! 0:0625, we have
that h! 0, but the error remains constant. Instead, consider the Gauss map n̂ : M 7! S2

which maps each point x on a surfaceM to the unit outward normal n̂(x) of the surface at
x. We de�ne �� to be the distance between mapped grid points on the unit sphere. Then
at all times for these three numerical test runs, the error in �dA

dt
using GWMFE appears to

be O�(��)2�. Thus it would appear that high accuracy of the GWMFE solution depends
on good angular resolution of the discretized surface.
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Figure 5. Initial 42-node sphere (with attached tetrahedra) and at t = 0:04.

Figure 6. Initial 162-node sphere (with attached tetrahedra) and at t = 0:04.
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Figure 7. Results for 42-node sphere run. Figure 8. Results for 162-node sphere run.
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Figure 9. Results for 642-node sphere run. Figure 10. Results for nonregularized GWMFE.

7.2 Columnar Microstructures. Our second set of test cases involve columnar
microstructures which are arbitrary 2-D collections of grains that are extended into the
third dimension to be right cylinders. These microstructures do not possess curvature in
the third dimension, and thus are amenable to a 2-D analysis.

In 2-D, microstructures moving under curvature driven motion also obey Von Neu-
mann's Law [13] which states that for an interior grain G surrounded by n neighbors
G1; G2; : : : ; Gn, the rate of area growth of G is

(7:1)
dA

dt
= �

�

3

�
n� 6

�
:

This is easily derived as follows. We have that

dA

dt
= �

Z
@G

vn ds;

where vn is normal inward velocity, and the integral is taken over the arc length of the
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boundary of G. Since vn = �K,

dA

dt
= �

Z
@G

�K ds

= ��
Z
@G

d�

ds
ds

= ��
Z
@G

d�:

R
@G

d� is not 2� if n > 0, since at each triple point junction, there is a 60o loss of angle
due to the 120o� 120o� 120o equilibrium angle condition (Figure 11) that exists at triple
points resulting from the necessity of force balance of surface tension at the triple point.
The interior grain G has n such triple points. We thus obtain (7.1).

"lost" angle

increasing θ

60
o

60
o

120
o

120
o

G

G2

G1

Figure 11. Loss of angle at triple point.

In Figure 12 we show the initial grid for a 5 grain columnar microstructure with axis
running top to bottom. A central square-columnar grain \G" (light in color) is surrounded
by 4 trapezoidal-columnar grains \G1", \G2", \G3", \G4", (darker in color). The area
A of the top surface of the central grain is 1 � 1 = 1, while the total top area of all �ve
grains put together is 2 � 2 = 4. GRAIN3D was run on this initial microstructure using
the same parameter values as in the regularized run of section 7.1. Nodes on the exterior
planes were allowed to slide on the planes, nodes on exterior edges were allowed to slide on
the edges, and the eight corner nodes were �xed. For this run, each of the four interfaces
between the four surrounding grains (i.e., G1 \G2, G2 \G3, G3 \G4, and G4 \G1) was
associated with and pinned to a vertical exterior edge.

Figure 12 also shows the evolved microstructure, as computed by GRAIN3D, at t=0.2.
The grains have remained columnar and the top surface of the central grain has shrunk.
The 4 triple points on the top surface have adopted the correct 120o-120o-120o angle at
this time. In Figure 13, we see computed and exact curves for �dA

dt
vs. t and A vs. t, where

we have used (7.1) with n = 4 to obtain the \exact" value �dA
dt

= 2�
3
. (We have called this

run \N=16", since A is bounded by 16 computational nodes.) For this run, the computed
and exact A vs. t are virtually identical. For most of the run, the computed and exact
values for �dA

dt
are virtually indistinguishable. At the beginning of the run there is a \blip"

where �dA
dt

is signi�cantly higher than the theoretical value of 2�
3 . We attribute this to the

state of the 4 triple points in the initial data. These 4 triple points are 90o-135o-135o in the
initial data, which is not the 120o-120o-120o force balance equilibrium that should exist.
Thus the initial blip represents rapid relaxation to the force balance state; essentially the
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code has accepted \incorrect" initial data (with forces not in balance at the triple points)
and relaxed it to an acceptable state on a rapid time scale. The �nal blip in �dA

dt
occurs

near the terminal time t = 3
2�

when the central grain has been reduced to an extremely
thin column, by which time the recoloring algorithm would have changed the topology,
had it been activated. This blip is not surprising, since the slender grain carries with it
virtually no energy (due to its vanishingly small surface area), and so errors present (i.e.,
due to the nonphysical regularization forces) may well be magni�ed at this advanced stage.

In Figure 14, we see �dA
dt

vs. t and A vs. t for a N = 32 geometry (i.e., at twice the

grid density of the one pictured in Figure 12). The initial anomalously high �dA
dt

blip is
shorter lived, and the �nal blip at the terminal time has disappeared.

A study of \pure" GWMFE error (with regularization turned o�) is impossible for
this problem. It was possible in the highly symmetrical sphere collapse problem of Section
7.1, but in this problem which exhibits less symmetry and which has changing triple point
angles, the regularization forces play a crucial role in preserving the positivity of all triangle
areas and tetrahedral volumes throughout the computation.
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Figure 12. Initial \16-node" columnar microstructure and at t = 0:2.
\16-node" refers to number of nodes bounding top surface of internal grain.
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Figure 13. Results for \16-node" run. Figure 14. Results for \32-node" run.

8. Numerical Example with 3-D Microstructure. In this section, we show
how GRAIN3D evolves a truly 3-D microstructure to steady-state, successfully maintain-
ing mesh quality and performing necessary topological changes during the course of the
calculation. In Figure 15(a), we show an initial �ve grain microstructure provided by the
LaGriT tetrahedral mesh generator. We evolve the mesh with GRAIN3D, using the same
regularization parameters as in the previous regularization runs. The nodes are allowed
to slide on the external surfaces, as in Sec. 7.2. Every �tmassage = 0:04 time units, the
mesh topology is \massaged": edges that are too long are bisected, unneeded nodes are
eliminated, and connections are swapped if necessary. Whenever we detect that a topo-
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logical component is about to collapse (such as a grain, a grain-grain interface, or a triple
line) in the next �tcollapse = 0:002 time units, we call the recoloring algorithm to e�ectively
perform the necessary topological change.

The massage algorithm is called immediately after t = 0:00, and the regularization
forces (especially perimeter dependent surface energy (3.7)) fatten the elements, so by
t = 0:02 (Figure 15(b)), the mesh is much improved. In (c), we have made one grain
graphically transparent to reveal triples lines and quadruple points. At t = 0:20 (d),
the invisible grain has shrunk. At t = 0:30 (e), the invisible grain has detached from
the rear wall. In (f), the invisible grain is near collapse. By (g), the grain has been
eliminated by the recoloring algorithm. This �gure also shows a small rear grain about
to collapse. In (i) this grain has collapsed and we are down to three grains. In fact, the
microstructure is now columnar (the axis runs front to back) and would be perfectly well
modeled by a 2-D front tracking code, such as that described in [4]. At t = 1:50 (j), the light
colored grain has disappeared, leaving a collapsing circular-columnar grain and a larger
complementary grain. At t = 1:75 (k), the circular-columnar grain has collapsed, leaving
the entire computational domain covered by a single grain. Evidence of the grain collapse
is visible in that the grid is somewhat �ner in the bottom right-hand corner. Finally, at
t = 1:80 (l), \massage" and regularization have coarsened the grid in the vicinity of the
last collapsed grain. Of course, the di�erence between the grids at t = 1:75 and t = 1:80
is purely non-physical|the grain is the same, but the grid is di�erent. The run is truly
completed at t = 1:75 when the microstructure evolution has ceased, but it isn't until
t = 1:80 that the grid has settled down.

9. Acknowledgement. The author would like to acknowledge the invaluable support
of the rest of the Los Alamos T-1 Grain Growth team: Neil Carlson provided assistance
with his GWMFE2DS code, Tinka Gammel generated the initial microstructure used in
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(a) t=0.00. Initial grid from LaGriT. (b) t=0.02. Grid improved by regularization

and massage.

(c) t=0.02. Grid with grain graphically (d) t=0.20. Invisible grain has shrunk.

removed for illustration.

(e) t=0.30. Invisible grain has detached from (f) t=0.45. Invisible grain about to collapse.

rear wall.

Figure 15 (a)-(f). Grain evolution time sequence computed by GRAIN3D.

24



(g) t=0.47. Invisible grain has collapsed. (h) t=0.80. Surface triple points draw apart.

(i) t=1.10. A second grain has collapsed. (j) t=1.50. A third grain has collapsed.

Microstructure now \2-D".

(k) t=1.75. Fourth grain has collapsed. (l) t=1.80. Grid improved by regularization

One grain left. and massage.

Figure 15 (g)-(l). Grain evolution time sequence computed by GRAIN3D.
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