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A new modeling approach is presented to improve numerical simulations of groundwater flow and

contaminant transport in fractured geological media. The approach couples geological and numerical

models through an intermediate mesh generation phase. As a first step, a platform for 3D geological

modeling is used to represent fractures as 2D surfaces with arbitrary shape and orientation in 3D space.

The advantage of the geological modeling platform is that 2D triangulated fracture surfaces are modeled

and visualized before building a 3D mesh. The triangulated fractures are then transferred to the mesh

generation software that discretizes the 3D simulation domain with tetrahedral elements. The 2D

triangular fracture elements do not cut through the 3D tetrahedral elements, but they rather form

interfaces with them. The tetrahedral mesh is then used for 3D groundwater flow and contaminant

transport simulations in discretely fractured porous media. The resulting mesh for the 2D fractures and

3D rock matrix is checked to ensure that there are no negative transmissibilities in the discretized flow

and transport equation, to avoid unrealistic results. To test the validity of the approach, flow and

transport simulations for a tetrahedral mesh are compared to simulations using a block-based mesh and

with results of an analytical solution. The fluid conductance matrix for the tetrahedral mesh is also

analyzed and compared with known matrix values.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The simulation of groundwater flow and contaminant trans-
port in geological formations requires three steps: (1) characteri-
zing the geology and developing conceptual models of the
hydrogeology and hydrologic material properties, (2) building
the computational grid and prescribing initial and boundary
conditions and (3) applying numerical models for fluid flow,
energy transport, and/or chemical transport (Gable et al., 1996b).
Because of the capabilities of CAD systems to represent and
visualize complex 3D geological objects, such as fractures, CAD
systems and hydrogeological models have been increasingly
combined to study fractured rocks. From a hydrogeological point
of view, fractured rocks are complex and are characterized by a
porous rock mass dissected by various types of discontinuities,
which are referred to as fractures. The rock mass typically has a
low permeability and high storage capacity, while hydraulically
active fractures have high permeability but lower storage capacity
because of their lower contribution to the total porosity of the
rock mass. Because they are permeable, fractures can therefore be
ll rights reserved.

lessent).
preferential pathways for contaminants. Transport processes in
fractured rocks include molecular diffusion, mechanical disper-
sion and advection. In the rock matrix, molecular diffusion usually
dominates over advection, such that the porous rock mass may
attenuate and retard the advective propagation of contaminants
along fractures (Tang et al., 1981; Therrien and Sudicky, 1996).
Representation of all fluid flow and transport processes is required
to realistically simulate the hydrogeological behavior of fractured
rocks. Depending on the scale of investigation and on the fracture
properties, two main conceptual models exist to represent
fractured media: the equivalent continuum model, where frac-
tures in the rock mass are not explicitly discretized, and the
discrete fracture model, where fractures are discretized. This
investigation addresses the discrete fracture representation and
focuses on the discretization of individual fractures.

The 3D geometrical representation of subsurface geological
structures, including fractures, is called the geological model, or
the Geomodel (Mallet, 2002). A mesh generation phase, repre-
senting the connection between the geological and the numerical
models, is necessary to discretize the Geomodel. The key problem
to solve here is this connection, and the challenge is to understand
the tradeoff between a high-resolution model that represents
hydrostratigraphy with a high degree of fidelity and a lower
resolution model that is perhaps better suited for intensive
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Nomenclature

2b fracture aperture (L)
A fluid conductance matrix
c solute concentration (ML�3)
D0 free-solution diffusion coefficient (L2T�1)
Dij hydrodynamic dispersion coefficient (L2T�1)
Fij Voronoi cell face area (L2)
Kij saturated hydraulic conductivity tensor (LT�1)

N finite element basis function
R retardation factor
Ss specific storage (L�1)
V tetrahedron volume (L3)
v velocity of groundwater flow (LT�1)
aL longitudinal dispersivity (L)
Zi set of nodes connected to node i

l solute decay constant (T�1)
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computations (Bower et al., 2005). Some studies have already
been conducted to couple a Geomodel with a numerical code to
simulate physical phenomena.

Kalbacher et al. (2005) proposed an interface between the
GOCAD platform1 and the numerical software Rockflow (Kolditz
and Bauer, 2004; Kolditz et al., 2008). They considered a 2.5D
fractured rock network, consisting of just planar surfaces in the 3D
space, and represented the network as a triangular mesh in
GOCAD. They did not discretize the rock matrix and only used 2D
triangular finite elements. They used the GMSH meshing soft-
ware2 to generate a suitable mesh for the numerical model. They
noted that generating and transforming the mesh within GOCAD
can lead to numerical errors during mesh generation or when
using other features of the CAD. These errors are difficult to locate
and it is difficult to correct or remove them once the mesh is
generated (Kalbacher et al., 2005).

Andenmatten-Berthoud and Kohl (2003) discretized a complex
geological site that contains faults by using the TGridlab GOCAD
plug-in, which generates a tetrahedral mesh. TGridlab is applic-
able if the domain can be represented as an assemblage of surface
boundaries that define closed volumes. Surface boundaries can be
fractures, fault surfaces or the boundary of the geological domain.
Once the domain boundary has been represented, the 3D domain
is discretized with tetrahedra, using the TGridlab plug-in. The
discretization is complicated if there are complex fault configura-
tions or fracture intersections and it becomes impossible if the 3D
boundary representation does not describe closed volumes.

Taniguchi and Fillion (1996) applied an approach similar to
that of Andenmatten-Berthoud and Kohl (2003). They divided the
whole fractured geological domain into subdomains separated by
fracture planes. They triangulated each subdomain independently
into tetrahedra, which are further subdivided into hexahedra.

A new approach for discretizing arbitrary fracture networks
embedded into a porous rock matrix is introduced here. The
discretization of the rock matrix is necessary for contaminant
transport simulations where matrix diffusion is significant.
Discretization therefore requires a simultaneous generation of
3D and 2D elements to represent, respectively, the rock matrix
and the fractures. In the general case, fractures can have any
orientation in space, they may be non-planar, and may intersect.
Additionally, fractures might not extend to the external domain
boundaries, making it impossible to create 3D volumetric regions
bounded by fracture surfaces as required by previous studies. As a
result, the discretization approach must represent triangulated
fractures embedded in a 3D tetrahedral mesh representing the
surrounding rock matrix. A key requirement of the approach
proposed here is to ensure that tetrahedra fit exactly the fracture
surface patterns, such that a tetrahedral face matches a triangle
belonging to a fracture surface. The novelty of the approach is that
1 www.gocad.org
2

HTTP://WWW.GEUZ.ORG/GMSH/
it takes advantage of a geological modeling platform to represent
fractures and combines a CAD system and a hydrogeological
numerical model to improve modeling capabilities.
2. Geological model and mesh generation

A CAD system is designed for precise editing and management
of spatial data and is therefore well suited for hydrogeological
models that require well-defined and well-located spatial data. To
represent fractured geological formations, the discretely fractured
conceptual model is chosen here and fracture zones have to be
explicitly represented. Because subsurface geological structures
are neither directly accessible nor fully known, the Geomodel is
built from local and scattered data obtained from field investiga-
tions. The data must be interpolated to create a 3D representation
of the subsurface. A geological modeling platform, such as GOCAD,
can efficiently interpolate 3D spatial data. This software is based
on an interpolation method for modeling natural objects and
representing a wide variety of complex data. As opposed to
traditional CAD systems that simply create attractive geometrical
entities without any constraints, GOCAD has been designed to
generate more complex structures and take into account the
physical properties attached to each object.

The Geomodel is then discretized with the LaGriT software,3

which has been developed at the Los Alamos National Laboratory.
Among possible mesh generators investigated, LaGriT has been
chosen because it offers the greatest number of advantages. Mesh
generation is a key link between Geomodels and numerical
models. Mesh generation must capture complex geometries and
ensure that the computational mesh is optimized to produce
accurate and stable solutions (Gable et al., 1996a). Meshes can be
classified as structured and unstructured, according to topological
characteristics. The topology of a mesh defines how nodes are
interconnected. Structured meshes are characterized by a foresee-
able rule that describes node connectivity with neighboring
nodes. On the contrary, unstructured meshes have no regular
topology and the list neighbors must be stored for each node. In
fact, there is no a repeatable pattern describing nodal connectiv-
ity, as relations between nodes change all over the domain.
Unstructured meshes are the most general ones and they are
broadly employed in geological models, especially in finite
elements problems. An unstructured tetrahedral mesh is used
here. A common algorithm to build a tetrahedral mesh is the
extension to three dimensions of the Delaunay triangulation. A
Delaunay triangulation for a set of nodes in a plane ensures that
the circumcircle of any triangle contains no other input nodes. In
three dimensions, triangles and circumcircles become tetrahedra
and circumscribed spheres, respectively, such that every sphere
must not contain nodes but the four tetrahedron’s nodes.
3 http://meshing.lanl.gov/

http://www.gocad.org
http://www.gocad.org
http://www.gocad.org
http://www.gocad.org
http://www.geuz.org/gmsh/
http://meshing.lanl.gov/
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Fig. 1. Mesh refinement around a fracture: dfield cell attribute indicates distance from fracture.
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The LaGriT mesh generation tool is based on the Delaunay
algorithm and it guarantees that the fluid conductance matrix is a
semi-positive definite matrix and ensures that flux calculations do
not have negative transmissibilities (Gable et al., 1996b). Avoiding
negative transmissibilities is necessary because they can lead to
nonphysical simulated values, such as negative concentrations or
saturations. LaGriT creates a mesh through three main steps: the
geometric definition of surfaces and volumes, the distribution of
nodes, and the connection of nodes into a mesh. The starting point
for the coupling process between geological and numerical
models is the application of the module of LaGriT capable of
reading GOCAD TSurf files. Using this module, GOCAD surfaces are
read as sheets, which are topologically 2D elements, but
geometrically 3D objects constituted by a collection of connected
triangles. Then, geometric regions are defined by logically
combining surfaces coming from GOCAD and any other user-
defined surface. The procedure developed to generate the
mesh for a sample problem with few fractures zones uses the
current LaGriT capabilities and it can be summarized by the
following steps:
1.
 Import into LaGriT the GOCAD TSurf file for each fracture.

2.
 Create a hexahedral mesh covering the domain of interest. This

mesh creates a distribution of nodes that will later be
connected to form a tetrahedral mesh.
3.
 Refine the hexahedral elements that are close to the fractures.

4.
 Copy to a tetrahedral mesh object all nodes belonging to the

hexahedral mesh and to the triangular meshes, representing
the fractures, and connect those nodes using the Delaunay
algorithm available in LaGriT.
5.

Fig. 2. Developed approach flowchart.
Define two geometric regions around each fracture with the
existing LaGriT operators, which are based on the notion of
surface inward-pointing normal and surface outward-pointing
normal. As a result, the 3D space containing the inward-
pointing normal and the 3D space containing the outward-
pointing normal are defined as two distinct regions separated
by the fracture.
6.
 Extract a 2D triangulated surface from the 3D tetra-
hedral mesh. With this procedure, the interface between
the two geometric regions defined at step 5 is extracted
and used to obtain the final triangulated surface fracture
(Fig. 1).
7.
 Output connectivity information for the tetrahedral and
triangular meshes.
Once all seven steps are completed, the mesh information is

read with the selected numerical code (see Section 3.1) and
groundwater flow and contaminant transport can be simulated. A
graphical view that summarizes the entire approach presented
here is shown in Fig. 2.
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3. Mathematical modeling

3.1. HydroGeoSphere

The numerical code selected here is HydroGeoSphere (Therrien
et al., 2007). Listing all the features of HydroGeoSphere is beyond
the scope of this paper and only those relevant to this work will be
mentioned. HydroGeoSphere is a numerical simulator specifically
developed for supporting water resource and engineering projects
pertaining to hydrologic systems with surface and subsurface flow
and contaminant transport components. It has been developed by
Therrien et al. (2007), who extended the FRAC3DVS code to
accommodate surface water flow and contaminant transport. The
control-volume finite element method, CVFE, constitutes the basis
for the numerical solution. Control-volume methods produce
discretized equations by applying physical conservation laws to
control-volumes surrounding mesh nodes. As a result, various
terms in the discretized equations have a physically meaningful
interpretation because the change in fluid mass storage for each
volume is balanced by the term representing the divergence of the
fluid mass flux in the same volume. Finite element methods, on
the other hand, allow for the representation of complex
geometrical domains with ease and efficiency. Thus, the CVFE
method combines advantages from both techniques. The numer-
ical implementation is presented in Therrien et al. (2007) and
Therrien and Sudicky (1996) and will not be repeated, except for a
few aspects linked to the approach proposed here.

The governing equation for 3D fully saturated groundwater
flow in the porous matrix, without sources or sinks, is

@

@xi
K
@h

@xj

� �
¼
@Ss

@t
i; j ¼ 1;2;3 (1)

and the 2D equation for fully saturated flow in discrete fractures is

@
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Contaminant transport in 3D porous media is described by
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and the 2D transport equation in discrete fractures is

@cf

@t
þ

vf i

Rf

@cf

@xi
�

@

@xi

Df ij

Rf

@cf

@xj

� �
þ lc ¼ 0 i; j ¼ 1;2 (4)

The standard Galerkin technique is used to discretize all
the above equations (Therrien et al., 2007; Therrien and
Sudicky, 1996). Using an approximation of the time derivative
by a finite difference representation and a lumped mass approach
to treat the storage terms, the discretized porous medium flow
Fig. 3. Element types and local node numbering conventions
equation becomes

Ss htþ1
i � ht

i

� � Vi

Dt
¼
X
Zi

gij htþ1
j � htþ1

i

� �
i; j ¼ 1;2;3 (5)

where parameter Zi is defined as being the set of nodes connected
to node i and the term gij contains the integral of the standard
finite element basis functions that depend on the element type.
The term gij is sometimes referred to as the transmissibility (for
example, Letniowski and Forsyth, 1991; Gable et al., 1996b), and
Eq. (5) indicates that a negative transmissibility value will cause
fluid flow from nodes with lower hydraulic heads towards nodes
with higher hydraulic heads, which is physically unrealistic.
3.2. Numerical model development

In the HydroGeoSphere version described in Therrien et al.
(2007), available elements to solve the 3D porous medium
equations are either hexahedral blocks or triangular prisms
(Fig. 3a), while in this work tetrahedral elements are proposed
(Fig. 3b). With the discretely fractured medium representation,
each fracture is explicitly represented by specifying its own
geometry, areal extent, dimensions and position in the 3D space.
The numerical approach is based on continuity of hydraulic
head and concentration at the fracture/matrix interface, which
corresponds to instantaneous equilibrium between the two
domains. This method is also called the common node approach
(Therrien et al., 2007; Therrien and Sudicky, 1996) and it is
essentially based on superposition of 2D fracture elements onto
the elements of the porous matrix (Fig. 4). Thus, nodes at fracture
locations are common nodes that receive contributions from both
the rock matrix elements and the fracture faces.

Representing irregular and non-planar fractures is more
complex than representing regular fractures. The HydroGeo-
Sphere code has been enhanced by Graf (2005) and Graf and
Therrien (2008) to represent nonuniform inclined discrete
fractures, adding the identification of internal faces in all 3D
matrix elements (Fig. 4a). The work of Graf (2005) constitutes the
basis for the development presented here and it is used to
compare numerical results and verify the approach proposed in
this paper. This approach is based on a new relationship,
incorporated into the HydroGeoSphere model, between 2D
triangular and 3D tetrahedral elements (Fig. 4b) representing,
respectively, the fractures and the porous rock matrix. Compared
to a regular mesh, a tetrahedral mesh allows local mesh
refinement that does not propagate to the mesh boundaries. A
tetrahedral mesh can also be adapted to complex geometrical
domains, such as fractured media.
: (a) HydroGeoShpere original version; (b) new element.
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Fig. 4. Fracture elements representation: (a) HydroGeoSphere original version; (b) new representation.
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To use both 2D triangles and 3D tetrahedra and to allow
compatibility with the LaGriT software, modifications to the
HydroGeoSphere code were required. For example, to compute
mesh segments and faces, HydroGeoSphere uses the maximum
number of segments connected to a single node. This number can
be easily determined from geometry in structured and regular
meshes and it is constant for block-based meshes. On the contrary,
in tetrahedral meshes the maximum number of segments
connected to a node may vary greatly depending on the
complexity of the mesh. The mesh generator LaGriT provides this
parameter and its value is incorporated into the HydroGeoSphere
numerical code.
3.3. CVFE method and the fluid conductance matrix

The control-volume finite element method applied to
numerical modeling in hydrogeology is discussed in Letniowski
and Forsyth (1991). In this method, a finite volume subgrid
is constructed as a complement to the finite element grid
(Geiger et al., 2004). The CVFE method combines the flexibility
of a finite element method with a local conservation
property, which is typical of finite volume schemes. To evaluate
the fluid conductance matrix, the influence coefficient techni-
que proposed by Huyakorn et al. (1984) is used. The technique
was first developed for linear rectangular elements and
then applied to 3D blocks and prism elements (Huyakorn et al.,
1986; Huyakorn et al., 1987; Beinhorn and Kolditz, 2003). It
provides a rapid evaluation of fluid conductance matrix coeffi-
cients, without requiring numerical integration phases and
therefore reducing computation effort (Huyakorn et al., 1984).
The integral of the basis functions, represented by gij in Eq. (5), is
given by

gij ¼

Z
V
rNiKrNj dV (6)

and it can be directly replaced by the elemental influence
coefficient matrix (Therrien and Sudicky, 1996). Coefficients gij

depend upon the type of elements and the shape functions
chosen. Simplex tetrahedra have been chosen here. Simplex
elements have linear sides and linear polynomials as interpolation
function. For a tetrahedron whose vertices are i, j, k and l, the
following known shape function is used (Allaire, 1985):

fNg ¼
1

6V
f1; x; y; zg

ai aj ak al

bi bj bk bl

ci cj ck cl

di dj dk dl

2
66664

3
77775 (7)

where V is the tetrahedron volume, calculated from the four nodes
coordinates.

After evaluating the Jacobian matrix, or element derivative
matrix, the elemental stiffness matrix can be calculated as

½A�ðeÞ ¼ Kxx � ½Axx� þ Kyy � ½Ayy� þ Kzz � ½Azz�

¼
Kxx

36V
�

bibi bibj bibk bibl

bjbj bjbk bjbl

bkbk bkbl

blbl

2
666664

3
777775

þ
Kyy

36V
�

cici cicj cick cicl

cjcj cjck cjcl

ckck ckcl

clcl

2
666664

3
777775

þ
Kzz

36V
�

didi didj didk didl

djdj djdk djdl

dkdk dkdl

dldl

2
666664

3
777775 (8)

In Eq. (8), matrices are symmetric and the half-lower matrices
are omitted for the sake of clarity. Matrix A is called the stiffness
matrix, even if this term usually refers to solid mechanics. For
fluid mechanics, it might be more appropriate to call it the fluidity
matrix or fluid conductance matrix as in Allaire (1985). The global
matrix containing all elemental contributions is obtained after the
assembly phase. This matrix may be an M-matrix, which is a real,
square, nonsingular matrix A, whose off-diagonal elements gij are
either zero or negative and whose diagonal elements are strictly
positive. The diagonal element gii in the control-volume discre-
tization is the sum of the absolute values of the other entries in
row i, causing the matrix to be diagonally dominant. M-matrix
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Fig. 5. Sample mesh: eight nodes, six tetrahedra.
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properties can be summarized as follows (Kosik et al., 2000):

gijp0 8iaj

giiX�
P

j

gij 8iaj

A�1
X0

(9)

Coefficients gij of the fluid conductance matrix A are called
transmissibilities (Letniowski and Forsyth, 1991; Letniowski,
1992) and their expression is given in Eq. (6). Transmissibility gij

can be evaluated analytically with Eq. (8), such that every gij

constitutes the entry (i,j) in the fluid conductance matrix A

and corresponds to the tetrahedral edge of extremities i and j.
Therefore, the flux between nodes i and j is given by

Qij ¼ gijðhj � hiÞ (10)

An M-matrix is desirable for iterative sparse matrix solvers. The
existence of an M-matrix implies that the so-called positive
transmissibility (PT) condition is satisfied, which guarantees that
the discrete flux between two nodes is in the opposite direction of
the dependent variable gradient (Putti and Cordes, 1998).
Otherwise, unrealistic results could be obtained, like a flux in
the direction of increasing hydraulic heads. However, even in
cases where the discrete solution does not demonstrate non-
physical behavior, the violation of the PT condition may cause
poor convergence behavior of the Newton iteration (Letniowski
and Forsyth, 1991).

The Delaunay algorithm is commonly applied to discretize the
space with triangles or tetrahedra. In two dimensions, the
Delaunay algorithm ensures the generation of an M-matrix
associated with the mesh (Cordes and Putti, 2001; Putti and
Cordes, 1998). In the case of a constant permeability tensor, a
given set of nodes in two dimensions can be triangulated such
that all interior edges have positive transmissibilities. This is
possible in two dimensions because of the equivalence of the
positive transmissibility condition and a Delaunay triangulation
(Letniowski and Forsyth, 1991). Kosik et al. (2000) came to the
same conclusion, using the maximum principle in the solution of
the diffusion equation. The violation of this principle can be
detected by the emergence of negative concentrations and
spurious oscillations, which are caused by negative transmissi-
bilities, and the resulting nonphysical flows. Unfortunately, a 3D
Delaunay triangulation does not, in general, produce positive
transmissibilities. Of course, it is still possible to seek a
triangulation that minimizes the number and size of the negative
transmissibilities (Letniowski and Forsyth, 1991). Linear Galerkin
finite element discretizations of the Laplace operator produce
non-positive stiffness coefficients for internal element edges of
two-dimensional Delaunay triangulations. This property is a
prerequisite for the existence of an M-matrix and ensures that
nonphysical local extrema are not present in the solution (Putti
and Cordes, 1998). The Laplace operator of the partial differential
equation is often discretized using the Galerkin method, but in the
case of a 3D tetrahedral mesh it does not lead to an M-matrix.
Therefore, it is interesting to analyze the orthogonal subdomain
collocation (OSC) method proposed by Putti and Cordes (1998,
2000), which is based on a different interpretation of the standard
Galerkin method. The OSC method considers as vertices of the
control volumes the circumcenters and not the gravity centers of
tetrahedra. The elemental stiffness coefficient can be obtained as
the negative ratio between the area of the Voronoi cell face Fij of
the tetrahedron and the length of the corresponding element edge
rij (Putti and Cordes, 1998)

gOSC
ij ¼ �

Fij

jrijj
(11)
For each tetrahedron, a [4� 4] matrix is calculated. As a result,
calculations are required only for six elements, whose expressions
are derived from Eq. (11) with geometrical considerations. The
expression for the first element gij would be (see Cordes and Putti
(2001) and Putti and Cordes (1998) for more details)

ge
ij ¼ �

1

48V
2ðrik rjkÞ ðril rjlÞ þ Ak Al

ðrik rjkÞ
2

Al Al
þ
ðril rjlÞ

2

Ak Ak

 !" #
(12)

Transmissibilities are evaluated with Eq. (12) and an M-matrix
is obtained. Therefore the OSC scheme preserves the physical
correspondence between fluxes and gradients, avoiding unrealis-
tic results.
4. Model verification

Test cases have been designed to verify the approach. First, the
evaluation of the fluid conductance matrix for the tetrahedral
mesh is verified (test cases 1A and 1B). Then, simulations of
groundwater flow and transport for simple geometries show that
the approach works properly (test cases 2, 3A, and 3B).
Simulations are for steady state flow fields. Simulation results of
tetrahedral mesh are shown for the Galerkin method. Moreover, a
comparison between OSC and Galerkin methods is given for test
case 3A by analyzing transport simulation results.
4.1. Test cases 1A and 1B: fluid conductance matrix

A first test has been carried out to verify the difference
between the Galerkin and the orthogonal subdomain collocation
methods to evaluate the elements of the fluid conductance matrix.
In the test, a unit cubic node distribution has been used and six
Delaunay tetrahedra (Fig. 5) have been created with LaGriT and
then read by HydroGeoSphere. With the Galerkin method, the
resulting global fluid conductance matrix has three off-diagonal
entries that are positive (Fig. 6), violating the M-matrix definition.
This demonstrates, as stated earlier, that in three dimensions a
Delaunay tetrahedralization may not lead to an M-matrix (Cordes
and Putti, 2001; Putti and Cordes, 1998; Letniowski, 1992;
Letniowski and Forsyth, 1991). With the OSC approach (Cordes
and Putti, 2001; Putti and Cordes, 1998), off-diagonal coefficients
of the fluid conductance matrix (Fig. 7) are either zero or negative.
Moreover, they are equal to those given by the LaGriT mesh
generator, which guarantees that a Delaunay mesh produces an
M-matrix.
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Fig. 7. Global matrix for eight nodes tetrahedral mesh: OSC method.

Fig. 8. Tetrahedral discretization used by Letniowski (1992).

Table 1
Transmissibility for segment AD.

Tetrahedron gAD Galerkin method gAD OSC method

ABDF �0.0159 �0.007293

ACDF �0.0050 0.011796

ABCD 2.2291 �0.007790

gAD
G
¼ gAD

ABDF+gAD
ACDF+gAD

ABCD

GLOBAL gAD
G 2.2082 �0.003287

3 / 6 1/ 6 1/ 6 0 1/ 6 0 0 0

5 / 6 1/ 6 3 / 6 1/ 6 1/ 6 0 0

5 / 6 3 / 6 1/ 6 0 1/ 6 0

7 / 6 2 / 6 1/ 6 1/ 6 1/ 6

7 / 6 3 / 6 3 / 6 0

5 / 6 1/ 6 1/ 6

5 / 6 1/ 6

3 / 6

− − −

− − −

− − −

− − −

− −

−

−

Fig. 6. Global matrix for eight nodes tetrahedral mesh: Galerkin method.

Fig. 9. Model design for test case 2: tra
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The enhanced code version capable of accommodating a
tetrahedral mesh has been also verified with the example
presented by Letniowski (1992), who considered a simple mesh
composed of five tetrahedra (Fig. 8). The nodes have the spatial
coordinates: A ¼ (�2,�2,0.5), B ¼ (0,�2,0.1), C ¼ (�2,0,0.1),
D ¼ (0,0.1,0), E ¼ (�2,�2,�0.25), F ¼ (�2,�2,1.5). The mesh,
created by Delaunay triangulation, contains five tetrahedra:
ABDF, ACDF, ABCE, BCDE and ABCD. The standard Galerkin
method is applied by Letniowski (1992) and the AD edge
connection value equals 2.208 (Table 1). In comparison, the
same coefficient calculated with the OSC method incorporated
into HydroGeoSphere is equal to �0.0032872 (Table 1), which is
the same value calculated by Putti and Cordes (1998), thus
verifying the correct implementation of Eq. (12).

4.2. Test case 2: groundwater flow and solute transport in a

horizontal fracture

The new modeling approach has been verified with an example
previously solved with both an analytical method and finite block
elements, to support the code development completed to date. In
this example, the propagation of uranium, in its isotope form U234,
is simulated along a horizontal fracture embedded in a
porous rock matrix. The horizontal fracture has been created in
GOCAD and then imported into LaGriT. In this specific case, the
fracture cuts through the whole domain (Fig. 9). A regular node
distribution has been chosen, corresponding to block dimensions
in the numerical example already treated in Therrien et al., (2007).
The domain contains 410 nodes (respectively 41, 2 and 5 in the x,
y, z directions), it has a unity thickness in the y-direction, a length
of 200 m in the x-direction and a length of 0.1 m in the z-direction,
such that elements orthogonal to the fracture have dimensions
of 0.025 m. Simulation parameters are listed in Table 2.
Observation points are placed along the fracture to visualize the
concentration profile.

The same problem has been solved with the analytical solution
CRAFLUSH (Sudicky, 1988), which solves the transport equation in
nsport along a horizontal fracture.

Table 2
Model parameters used in test case 2.

Parameter definition Value

Source concentration at fracture origin, C0 (kg/m3) 1

Source concentration in the matrix (kg/m3) 0

Velocity in the fracture (m/y) 100

Fracture aperture, 2b (m) 0.0001

Fracture spacing, B (m) 0.1

Longitudinal dispersivity in fracture, aL (m) 1

Free solution diffusion coefficient, D0 (m2/y) 0.031536

Retardation factor in the matrix, R 14300

Tortuosity 0.1

Solute half-life, T1/2 (y) 245000

Matrix porosity 0.01
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Fig. 10. Results test case 2: tetrahedral mesh, block-based mesh and analytical solution.

Fig. 11. Different fracture configurations.

Fig. 12. Tetrahedral mesh with refinement around an inclined fracture for case 3A.
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a system of parallel fractures with matrix diffusion and long-
itudinal dispersion along the fracture. CRAFLUSH numerically
inverts the Laplace transformed solution that is presented in the
studies of Tang et al. (1981) and Sudicky and Frind (1982). The
results obtained using HydroGeoSphere with the newly imple-
mented tetrahedral mesh agree very well with the analytical
solution results (Fig. 10). The comparison with a block-based mesh
shows two very similar concentration profiles because the
fracture is horizontal and the use of blocks or tetrahedra does
not affect the geometry of the discretized fracture.
4.3. Test cases 3A and 3B: transport in a single inclined fracture

For test case 3A, two different discretized fracture configura-
tions based on a block-based mesh (Fig. 11, configurations 1 and 2)
are compared to the new representation based on the tetrahedral
mesh (Fig. 11, configuration 3). The block-based mesh contains
24,442 nodes and 12,000 elements. It is 10 m and 12 m long in the
vertical direction and horizontal directions, respectively, with a
unit thickness in the third direction. The tetrahedral mesh has
been generated from a regular node distribution with 61 nodes
along the x-axis, 51 along the z-axis and 2 along the y-axis. The
mesh was then refined around the inclined fracture. The refined
mesh (Fig. 12) has 3609 nodes and 14,279 tetrahedra. The block-
based and tetrahedral mesh simulations both consider a constant
concentration of contaminant equal to 1.0 on the top of the
domain (Fig. 13). All other boundaries are assigned zero dispersive
flux for transport. An inclined fracture (about 401) crosses the
whole domain. Specified head conditions are imposed at x ¼ 0 and
x ¼ 12, with a hydraulic head difference equal to 0.5 m. Other
simulation parameters are listed in Table 3. An observation point
is located at coordinates (6,0,5). The fracture strongly controls
the solute migration and different fracture configurations
provide comparable breakthrough curves (Fig. 14). However, the
tetrahedral mesh gives a result closer to the Blocks_Internal_
Faces curve than to the Block_Stairway curve, as may be expected
since the fracture in the tetrahedral mesh is like a sheet and the
solute pathway is not lengthened, which is the case for the block-
stairway configuration. Computed concentrations indicate that
the minimum value obtained with the OSC method is exactly 0,
which is equal to the initial concentration imposed in the domain.
In contrast, a negative value of �3.6�10�4 is obtained with the
Galerkin method. Negative concentration values, even if they are
small in this case, are clearly nonphysical since they correspond to
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a negative mass. Therefore, the OSC method seems to be more
appropriate than Galerkin method, especially for transport
simulations.

Another simulation, test case 3B, was run to verify the fracture
behavior. The geometry is the same as used previously, but now
heads and concentration are only imposed at the extremities of
the fracture (Fig. 13). Simulation parameters are listed in Table 3.
The surrounding rock matrix is considered impermeable, such
that the solute propagation along the fracture could be evaluated
with the simplified Ogata–Banks analytical solution applicable
when the observation point is far from the source of solute, and
which expresses concentration as

cðx; tÞ ¼
c0

2
erfc

x� v t

2
ffiffiffiffiffiffi
D t
p

� �
(13)
Fig. 13. Model design for test cases 3A and 3B: transport along a single inclined

fracture.

Table 3
Model parameters used in test cases 3A and 3B.

Parameter definition Value

Source concentration, C0 (kg/m3) 1

Fracture aperture, 2b (m) 0.0002

Longitudinal dispersivity in fracture, aL (m) 0.1

Free solution diffusion coefficient, D0 (m2/y) 0.15768

Tortuosity, t 0.1

Matrix porosity 0.35

Matrix hydraulic conductivity (m/y) 0.864

Matrix longitudinal dispersivity, aL (m) 0.1

Fig. 14. Results test case 3A: tetrahed
The velocity along the fracture is 0.00093 m/s. Simulation
results are shown in Fig. 15. The solute breakthrough curves
computed at the observation point show that the tetrahedral
mesh gives a very good approximation of the Ogata–Banks
analytical solution, even better than the Blocks_Internal_Faces
solution. The Blocks_Stairway configuration is obviously the worst
one, as the travel distance is lengthened compared to a planar
fracture. Thus, the mesh generation process adopted here leads to
a better representation of inclined fractures.
5. Summary and conclusion

A new modeling approach for fractured geological media is
presented here. It is based on the combination of the geological
modeling platform GOCAD, the mesh generation software LaGriT
and the numerical model HydroGeoSphere. Fractures are built in
the geological modeling platform and they are represented by
conforming triangulated surfaces, such that they can be easily
visualized and their geometry modified before the 3D mesh is
generated. The 3D tetrahedral mesh is created with LaGriT and it
is easily refined around fractures. The enhanced HydroGeoSphere
version can read 3D tetrahedral mesh data in LaGriT format and
some tetrahedral faces are then selected and defined as 2D
triangular fracture elements.

Several test cases are carried out to verify the approach
proposed. First, the evaluation of coefficients in the fluid
conductance matrix for the tetrahedral unstructured mesh is
verified. Moreover, an application of the orthogonal subdomain
collocation method shows how an M-matrix can be obtained with
a Delaunay tetrahedral mesh. Then, simulation results obtained
with the new mesh configuration proposed are compared with a
known analytical solution and with other numerical results. A
good match exists with the analytical solution presented.
Furthermore, comparison with block-based meshes proves that
the approach presented in this paper offers a better way to
represent discretized fractures, without increasing their path
length. In conclusion, the fracture configuration proposed here,
which is based on the combination of tetrahedral and triangular
finite elements, is shown to be appropriate and the application of
the whole modeling approach is straightforward. This paper
focuses on the verification of the correct implementation of the
proposed approach, which is based on the coupling of different
modeling tools. Simple test cases are presented as the first
application of the approach. Future work will extend the
application of the approach to more complex domains, which
ral mesh and block-based mesh.
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Fig. 15. Results test case 3B: tetrahedral mesh, block-based mesh and analytical solution.
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can include intersecting fractures and pumping wells. An
application to a real site will show the applicability and utility
of the modeling approach presented here.
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