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Abstract

This paper will describe modeling microstructure evolution using a combination of our gradient-weighted moving

finite elements code, Grain3D and our 3-D unstructured grid generation and optimization code, LaGriT. Grain

boundaries evolve by mean curvature motion, and Grain3D allows for the incorporation of grain boundary orientation

dependence modeled as anisotropic mobility and energy. We also describe the process of generating an initial com-

putational grid from images obtained from electron backscatter diffraction. We present the grid optimization opera-

tions developed to respond to changes in the physical topology such as the collapse of grains and to maintain uniform

computational grid quality. For 3-D columnar microstructures, validation of the method is demonstrated by com-

parison with experiments. For large systems of fully 3-D microstructures, simulations compare favorably to the par-

abolic law of normal grain growth.
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1. Introduction

Metals important to semiconductor manufac-

ture such as aluminum and copper possess a mi-

crostructure consisting of polycrystals. The

interfaces between the crystals have excess free

energy r per unit area that represents the work

that must be done to create unit area of interface.

(r may also arise from material lying in or close to
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the interface.) As the metal is heated, the grain
boundaries move to minimize surface energy in

such a way that the normal velocity of a point on

the grain boundary is proportional to the mean

curvature at that point [15,17].

In this paper in Section 2 we describe a moving

finite element code, Grain3D, that has been de-

veloped to model grain boundary evolution. In

Section 3 we describe the set of grid maintenance
operations implemented in LaGriT (Los Alamos

Grid Toolbox) [8]. This set keeps the computa-

tional mesh from becoming tangled and assures the

quality measure of the elements of the mesh does

not degrade. In Section 4 the authors provide an

experimental validation of the modeling technique
ed.
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in which we compare at the level of individual

grains the experimental and computational evolu-

tion. In Section 5 we present the statistical results

of simulations on large systems of 5000 grains.

Sections 6 gives implementation and availability
information for Grain3D and LaGriT.
2. Summary of method

In our simulation of grain growth as imple-

mented in the code Grain3D, we discretize indi-

vidual grains by tetrahedra and we discretize the

interfaces between the grains by the linear triangles

that are the facets shared by adjacent tetrahedra of

differing grains. Typically, there are on the order

of a hundred tetrahedra used to discretize single
grains and on the order of tens of triangles dis-

cretizing an interface between two adjacent grains.

We use gradient-weighted moving finite ele-

ments (GWMFE) [2,3,14] to move the network of

triangles that corresponds to the grain interfaces.

In our mean curvature model of grain growth, the

interface surface�s motion is described by

vn ¼ lrK; ð1Þ
where vn is the normal velocity of the interface, K
is the curvature, l is the mobility, and r is the free

interfacial energy per unit area.

As in [11], in the GWMFE method, interfaces

are represented as parametrized piecewise linear

surfaces:

xðs1; s2Þ ¼
X
nodes j

ajðs1; s2Þxj:

Here ðs1; s2Þ is the surface parametrization, the

sum is over the N interface nodes, ajðs1; s2Þ is the
piecewise linear basis function (hat function)

which is unity at node j and zero at neighboring

nodes, and xj ¼ ðx1j ; x2j ; x3j Þ 2 R3 is the vector po-
sition of node j.

We have that

_xxðs1; s2Þ ¼
X
j

ajðs1; s2Þ _xxj

is the velocity of the surface at the point xðs1; s2Þ
(based upon linear interpolation of node velocities)

and
vn ¼ _xxðs1; s2Þ � n̂n ðn̂n is local surface normalÞ:

So

vn ¼
X
j

ðn̂najÞ � _xxj: ð2Þ

In effect, we have that the 3N basis functions for vn
are nkaj, where n̂n ¼ ðn1; n2; n3Þ. These basis func-

tions are discontinuous piecewise linear, since the

nk are piecewise constant.

The GWMFE method is to minimizeZ
ðvn � lrKÞ2 dS ð3Þ

over all possible values for the velocities _xxi. (The

integral is over the surface area of the interfaces.)

We thus obtain

0 ¼ 1

2

o

o _xxki

Z
ðvn � lrKÞ2 dS;

¼
Z

ðvn � lrKÞnkai dS 16 k6 3; 16 i6N :

Using (2), we obtain a system of 3N ordinary

differential equations (ODEs):Z
n̂nn̂nTaiaj dS

� �
_xxj ¼

Z
lrKn̂nai dS

or

CðxÞ _xx ¼ gðxÞ; ð4Þ

where x ¼ ðx11; x21; x31; x12; . . . ; x3N Þ
T ¼ ðx1;x2; . . . ;xN ÞT

is the 3N -vector containing the x, y, and z coor-

dinates of all N interface nodes, CðxÞ is the matrix

of inner products of basis functions, and gðxÞ is the
right-hand side of inner products involving surface

curvature. Since n̂nn̂nT is a 3 · 3 matrix, it is clear that

CðxÞ has a 3 · 3 block structure. The system of
ODEs (4) along with boundary conditions is

solved with an implicit second order backwards

difference variable time-step ODE solver [2]. We

use generalized minimal residual (GMRES) itera-

tion [18] with block-diagonal preconditioner to

solve the linear equations arising from the New-

ton�s method. The ODEs are uniformly scaled so

that the computational domain is Oð1Þ and the
truncation error g (i.e., the maximum acceptable
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estimated error made in the xkj every time step) is

usually set to 10�3.

Our computational domain is rectangular�
X ¼

Q3

k¼1 ½ak; bk�
�
and we take as boundary con-

dition that nodes on the six planar bounding sur-

faces of X are constrained to frictionlessly slide on

those surfaces. Since the Herring equation is sat-

isfied where the computational interfaces intersect

the external boundary (see below), this implies that

our interfaces perpendicularly intersect oX.
2.1. Computation of curvature forces

Since the curvature K is zero on the interior of

triangle faces and is infinite at the edges, the inner

products involving curvature must be computed

using a mollification argument which is presented

in [11]. The result of the derivation is that the

right-hand side of (4) corresponding to the ith
node is given byZ

lrKn̂nai dS ¼ �l
X

triangles k with i2k

1

2
rLopp

k t̂toppk

¼ �lrxi

X
triangles k with i2k

rAk

 !
; ð5Þ

where the sum runs over the triangles k which have

i as a vertex. Ak is the area of triangle k; Lopp
k is the

length of the edge opposite node i on triangle k;
t̂toppk is the ‘‘inward edge normal’’ which is in the

plane of triangle k, is normal to the edge opposite

node i and points towards node i.
Eq. (5) shows that the node-concentrated

‘‘right-hand side force’’ on the ith node is equal to

the negative gradient, with respect to the node

position variables xi ¼ ðxi; yi; ziÞ, of the surface

integral of the surface energy density r on our

GWMFE piecewise linear surface. This mirrors

the physical model where mean curvature motion

is derived under the assumption that the mecha-

nism of grain growth is minimization of excess
surface energy proportional to the surface integral

of r. This negative gradient force on the ith node is

exactly that which would be given by a ‘‘surface

tension’’ of magnitude r in the planar triangular

cells of our GWMFE piecewise linear surface, as

pointed out in [3,14].
We note here that the form (5) for the right-

hand side PDE driving terms makes conceivable

computations where r ¼ rðn̂nÞ that is, where r de-

pends on the direction of the normal at the surface.

In this case, one need only loop through triangles
in the mesh and evaluate the quantities (5) using

the inclination-dependent r. If r depends on n̂n,

then triangles k incident on i will impart torque

forces as well as surface tension forces. (In the

computational examples in this paper, r is not

inclination-dependent.) If r depends strongly on n̂n,

faceting of the surface can occur [7].

Adding up all the triangle contributions (5)
from each of the three incident surfaces for each

node i that exists on a triple line––a line where

three grains meet––imposes in a natural fashion a

balance of surface tensions and surface torques at

the triple line. The means we satisfy the Herring

equation [9] at triple lines which simply requires

that surface tensions and torques of incident in-

terfaces balance. In the constant r case, this im-
plies the interfaces make 120�–120�–120� angles at
the triple line.

2.2. Regularization forces

Although the GWMFE minimization principle

(3) determines grid point motion normal to the

interface, it does not determine grid point motion
tangential to the interface. In non-planar regions

this is acceptable since the normals of the triangles

incident on each node i span the three-dimensional

space and motion of node i will be uniquely de-

termined. However, if node i is coplanar with its

neighbors (to within the local truncation error

accuracy g), minimization of (3) will not address

motions in the plane of the interface, leading to
singularity or near-singularity of the matrix CðxÞ.
As detailed in [11], we solve this problem by add-

ing tiny grid viscosity forces that only dominate in

the cases where CðxÞ is nearly singular. These

forces depend on the discretization of the grid and

the local truncation error g, and they do not ap-

preciably effect the accuracy of the solution with

the value of g used in practice.
In addition, we add triangle quality forces that

are negligible until surface triangles are of such

poor shape that their inscribed radius is less than g.
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In this case, the regularization forces take over and

effectively ‘‘lock up’’ the triangle until it can be

removed by grid maintenance operations described

in Section 3.

See [11] for a full discussion of regularization
forces and convergence studies where the solution

of (1) is known exactly.

2.3. Enlargement of system to move non-interface

nodes

System (4) gives velocities of the interface nodes

only ð _xx ¼ ð _xxkj Þ
;16 k6 3

;16 j6NÞ, and so the system must be
enlarged to include velocities for M interior nodes

that are not part of the interface. That is, we ex-

tend x to

x ¼ xinterface

xinterior

� �
;

where xinterface ¼ ðxkj Þ
;16 k6 3

;16 j6N , and xinterior ¼
ðxkj Þ

;16 k6 3

;Nþ16 j6NþM . With this extension, we enlarge

system (4) to be order N þM .

Since interface physics only tells us how to
evolve the N interface nodes, we must ‘‘artificially’’

construct the extra elements in the enlarged CðxÞ,
gðxÞ to allow for orderly (tetrahedra orientation

preserving) evolution of the mesh. That is, given a

physically meaningful method of evolving the tri-

angular interfaces, we are free to develop auxiliary

equations for moving the tetrahedra (some of

which are conformally attached to the triangular
interfaces) with the only requirement being that

these equations lead to efficient solution of the

system (4), and that they maintain positive orien-

tation of tetrahedra. As detailed in [11], we add

‘‘quality’’ forces to maintain good tetrahedral as-

pect ratios. These forces are chosen to be tiny, so

that where they affect a tetrahedral vertex that

happens to be on an interface, the effect on the
physically justified curvature forces is negligible

until the tetrahedron has an inscribed radius of

order of the truncation error g of the integrator.

For large grains the effect is negligible, but for

small grains it will effectively stop the collapse of

grains when they reach a diameter of order g; then
grid manipulation operations must explicitly re-

move the tiny grains. These grid operations are
discussed in the next section.
One may ask why not just move interfacial tri-

angles and entirely dispense with the tetrahedral

discretization of the grain interiors. One reason is

that we now have a moving volume mesh available

for computation of ambient quantities that could
affect grain growth. For example, computa-

tions have been done with Grain3D where

heat diffusion was computed on the tetrahedral

mesh and used in conjunction with a temperature-

dependent interface mobility [1]. A second reason

is that the presence of the tetrahedral mesh pro-

vides extra information for handling topological

issues of grain collapse and grain neighbor
switching.
3. Grid maintenance operations

Two tool sets that optimize and maintain the

computational mesh are required to allow our

simulations to run to completion. The first set
combines node smoothing, node merging, edge

refinement, and face swapping into a LaGriT

tool called ‘‘graph massage’’ which is designed to

prevent the mesh from tangling and to insure

well-shaped elements. The second set, called

‘‘popcomponents’’, detects changes in interface

topology and modifies the mesh to respond to these

changes.
As the grain interfaces move, the tetrahedra

attached to the interface triangles become stret-

ched or compressed. To maintain good element

quality and to prevent fatal mesh tangling, ‘‘graph

massage’’ is invoked periodically. Graph massage

accepts as input three lengths: a maximum edge

length Lmax, a minimum edge length Lmin, and a

damage tolerance. The first two parameters con-
trol edge bisection and node merging. If the edge is

longer than Lmax, the edge will be bisected. If an

edge is shorter than Lmin, then one of the two

endpoints of the edge will be merged into the other

endpoint. The choice of which endpoint to merge

is based on which results in the best shaped ele-

ments and the least ‘‘damage’’ as defined below.

Graph massage characterizes a node by the num-
ber and identity of the grains containing the node.

Merges are allowed between nodes having exactly

like characters. Additionally, a node whose char-
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acter is a subset of a neighboring node may be

merged into that node but the inverse merge is not

allowed. For example, an interior node may be

merged into an interface node, or an interface

node into a triple line node, however the inverse
merges are forbidden. This restriction guarantees

that quadruple points at the ends of triple lines are

not merged away and that the grain interfaces are

preserved. After the merge/bisection step, recon-

nection will swap faces, so as to maximize the ele-

ments� inscribed radii.

The final parameter, damage tolerance, controls

how much interface and boundary ‘‘damage’’ is
allowed, where ‘‘damage’’ is a measure of the

distortion that results from one of the optimiza-

tion operations and is only a factor for nodes on

interface surfaces. The distortion is the perpen-

dicular distance from the original node position on

an interface surface to the new position. In Fig. 1

assume that edges AB, BC exist on a triple line

separating 3 grains. Then merging node B into
either node A or node C would result in a change

in the shape of the triple line. It would be pulled

straight. We define the ‘‘damage’’ to be the height

‘‘h’’ from the original position of node B to the

new edge AC. An analogous definition handles the

case where the node to be merged away lies on an

interface surface but not on an triple line. In this

case, the ‘‘damage’’ is the perpendicular distance
from the node�s original position to the new sur-

face. We disallow any operation that would cause

damage greater than the input damage tolerance.

If the damage tolerance is small, one can expect

only small node movements, few node annihila-

tions, and few edge swaps involving elements at

curved portions of material interfaces or bound-

aries. Conversely, a large value can result in sig-
nificant deformation. We choose the value large
Fig. 1. h is the ‘‘damage’’ that would result from merging node

B into either node A or node C.
enough so that sufficient grid changes are allowed

to keep the simulation going, but not so large that

grid damage dominates other sources of error,

such as allowed local truncation error in the ODE

integrator.
Graph massage forbids any operation that

would cause element inversion or near-inversion.

Periodically during the grain evolution, LaGriT

graph massage is invoked by Grain3D to improve

mesh quality. All operations are performed in a

way that guarantees that the mesh connectivity

will not become corrupted and that ensures the

integrity of grain interfaces. In this context La-
GriT is linked into Grain3D as a toolbox and its

operations are controlled by the grain evolution

code.

The second category of mesh optimization tool,

‘‘popcomponents’’, captures changes in interface

topology [12]. We keep track of the various con-

nected topological components and determine

whether they are on the verge of disappearing or
changing as the simulation evolves. The connected

topological components are the tetrahedral sets

comprising each grain, the interface triangle sets

between each pair of grains, and the edge sets that

bound the triangle sets (these sets constitute the

triple lines of intersection between triplets of

grains). For example, for all pairs of grains that

touch each other, we monitor the topological
component consisting of connected interface tri-

angles between the two grains. If the total surface

area of one such component is about to go to zero,

a physical topological change is imminent;

Grain3D detects this change and responds by

invoking the LaGriT toolbox set to perform

topological operations on the computational tet-

rahedral mesh. Similar strategies are required to
detect other forms of topological change. We

identify the neighborhood surrounding the col-

lapsing feature and refine this neighborhood to

provide a thin buffer region. The encroaching

grains are examined to identify a ‘‘winner’’––

usually that grain which subtends the largest angle,

and the collapsing feature and its associated

neighborhood are assigned to the winning grain.
This reassignment effectively destroys the collaps-

ing feature and thus repairs the topology. For

details see [11,12].
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4. Experimental validation

Grain3D is an appropriate code to simulate

thermal annealing. To validate our computational
model, we experimentally evolved columnar mi-

crostructures of a total of 5170 grains in 19 thin

aluminum foil samples. We then compared the

computed evolved microstructure with the final

experimental state at the level of individual grains.

The 1 · 1 cm2 samples were 120 lm thick, cut from

99.98% pure Al foil [6]. The starting polycrystal-

line microstructure was annealed for 9 h at 550 �C
and then electro-polished and measured using

standard electron backscatter diffraction (EBSD)

to give the initial microstructure for the simula-

tion. The samples were then annealed a second

time for 20 min at 550 �C to generate the final

microstructure. The average interface velocity of

typical grains of radius 100 lm was observed to be

0.1 lm/s [4]. (Note: It is reasonable to expect that
at the large grain sizes (1–1000 lm) observed in

this experiment, curvature-driven migration dom-

inates, whereas rotation should dominate in

nanoscale grain sizes [10,13].)

In order to create the computational meshes, we

used the grain interfaces and triple junctions from

the EBSD images and invoked the image pro-

cessing algorithms detailed in [19]. The results of
the image processing step are fed into LaGriT for

grid generation; LaGriT is run in stand-alone

mode to prepare an initial grid for input to

Grain3D.
Fig. 2. Three steps in mesh generation. The left figure shows the ord

figure shows the triangulated single planar grain defined by the nodes in

single grain generated by extruding the mesh created in the preceding
The first step in grid generation for our appli-

cation is to separately triangulate each grain from

the grain boundaries. The grain boundaries are

given by the contour extraction algorithms [19] as

sets of ordered pairs of coordinates. The result of
the first step is a set of two-dimensional planar

triangular meshes, one for each grain. Since the

experimental structure is columnar, the second

step is to extrude each grain�s two-dimensional

mesh in a direction perpendicular to the plane,

resulting in a three-dimensional prism mesh for

each grain. Then each prism is divided into three

tetrahedra. Note that the extrusion step doubles
the number of nodes, but that converting the

prisms to tetrahedra adds no additional nodes to

the mesh. Third, the exterior boundary is extracted

from each grain�s three-dimensional volume mesh;

each boundary mesh is a triangular mesh that is

topologically two-dimensional but geometrically

three-dimensional. The first three grid generation

steps are shown in Fig. 2.
The fourth step results in a single conformal

three-dimensional mesh. The individual boundary

meshes created in step three are used as surfaces,

and the area inside each boundary mesh is identi-

fied as a separate geometric region. When meshing,

LaGriT creates conforming interfaces where re-

gions meet, and this capability in this context re-

sults in each grain being meshed into a separate
region. All nodes from the boundary meshes are

copied into the combined mesh. At this point ad-

ditional nodes may be added to the mesh. In the
ered set of nodes defining a typical grain boundary. The center

the preceding step. The right figure shows the surface mesh of a

step and then extracting the surface.
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simple example given in Fig. 3, a node is added

near the center of the top and bottom surfaces of

each grain. Tetrahedral elements are formed in the

combined mesh using a Watson point insertion

algorithm [20]. The boundaries of the individual

grains are preserved.
At this point, the quality of the initial three-

dimensional mesh is quite poor and graph massage

is invoked to improve quality. Fig. 3 shows a

simple 3-D computational mesh before and after

graph massage. The right-hand figure is a small

initial computational mesh to be input to

Grain3D. The actual initial computational meshes

contained on average 250 grains; the smaller grid is
shown to clearly illustrate the process used.

In Grain3D grain boundary motion is propor-

tional to local mean curvature of the interface. To

obtain values for the grain boundary mobility l
and the interface energy r, we used the EBSD

measured grain misorientation and previously de-

termined statistical analysis of triple junction ge-

ometry and crystallography in aluminum [21].
Note that this process results in a single interface

misorientation for each pair of grains, giving an

average r for each grain boundary. Sometimes the

different average r�s from different grain bound-

aries made it impossible to set up a consistent

satisfaction of force balance at triple lines. (After

all, the average r along a grain boundary is not

necessarily the limiting value of r for that
boundary as it approaches a triple line.) Since this

was unacceptable for computation, we limited our
simulations to the case where r was constant and

mobility was either isotropic (l constant and equal

to 1) or anisotropic (l varies according to the

crystallographic orientation of the grains).

For a quantitative comparison of simulation

and experiment, we introduce a normalized area
match function NAMF [5] over a dense regular

grid of sampling points. One may think of this

comparison method as overlaying the final exper-

imental state onto the successive simulation snap-

shots and measuring at each simulation snapshot

the percentage of area where the grain orientations

match. The higher the value, the better the match.

Because of the short annealing time, the value
of NAMF at the initial time is relatively high. In a

representative run, we find a 62% match between

initial and final experimental states. Examining the

amount of match shown in successive simulation

snapshots, we find that using isotropic properties

the match improves to a maximum of only 68%,

whereas using anisotropic mobility the match im-

proves to 82%. Comparing simulation to experi-
mental results for all 19 runs bore out the pattern

that isotropic simulation was of little predictive

value, while anisotropic simulation did a good job

of predicting the experimentally evolved micro-

structure as measured by NAMF. The failure of

the anisotropic simulations to be perfectly predic-

tive (i.e., produce NAMF¼ 1) may be due to the

failure to incorporate energy anisotropy and may
also be due to sample error, dislocation density, or

stored deformation energy. It may also be due to
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computational indeterminacy due to topology

changes. An example of this is where an unstable

‘‘quadruple’’ line may have two equally favorable

ways of splitting into pairs of triple lines, and our

simulation chooses the ‘‘wrong’’ way. For a full
discussion of these results, see [5].
Fig. 4. Best fit of function of form ðAþ BtÞ3=2 through com-

puted mean grain volume versus time data for 3-D simulation,

along with best linear fit.
5. Fully 3-D grain evolution simulations

For a fully 3-D non-columnar simulation, we

evolve the grain boundary surfaces on large sys-

tems consisting of on the order of 5000 grains at

the initial simulation time. Currently there is no

fully three-dimensional non-destructively mea-

sured experimental data to compare to. Here, the

purpose of these simulations is to test the self-
similarity hypothesis of Mullins [16]. This hy-

pothesis requires that the same equation for grain

boundary motion be taken to be valid over a

particular range of length scales and that the grain

size distribution evolve in a self-similar fashion. In

the previous section, we noted that Eq. (1) should

be valid over the length scale of grain sizes between

1 and 1000 lm. If grain evolution occurs in a self-
similar fashion, the mean grain size D should

evolve as

D2ðtÞ � D2ð0Þ ¼ Bt;

with B a constant [16]. This is known as the par-

abolic prediction of normal grain growth. Conse-

quently, the evolution of the mean grain volume V
should be well-fit by a curve of the form

V ðtÞ ¼ ðAþ BtÞ3=2; A;B constant:

In our 3-D simulations we use isotropic mobility

and energy and disregard grain orientation. The

starting configurations for the simulations are
obtained by using a pseudo-random process of

choosing the desired number (5000) of nucleation

sites. We then grow the grains using a constant

velocity until grains collide at which time they stop

growing. This initial configuration is input to

Grain3D which evolves the grain boundaries ac-

cording to (1) but with the simple case of isotropic

mobility and energy.
We computed on the dimensionless domain

X ¼ ½�1; 1�3, using unit dimensionless reduced
mobility (lr ¼ 1), and plotted data for four com-

putational runs in Fig. 4 (showing the evolution of
dimensionless average grain volume versus di-

mensionless time). To put this in concrete terms, if

we assume that the domain corresponds to [)1
mm, 1 mm]3, then the initial average grain volume

is (2 mm)3/5000 ¼ 0.0016 mm3, and grows in the

simulations to 0.016 mm3, corresponding to an

approximate doubling in grain size. The typically

observed reduced mobility for Al grains that were
simulated previously in [5] is about 10�5 mm2/s, so

the x-axis units would correspond to units of 105 s,

i.e. the x-axis runs from 0 to 4000 s.

The exterior surfaces of grains that lie on the

surface of the computational cube are required to

remain planar. Because of this boundary effect, we

gather statistics only from grains all of whose

surfaces are strictly interior to the computational
domain.

We ran four simulations varying the initial

conditions by changing the seed of the grain

placement algorithm and by changing the initial

node density. We look at the results for 40 output

time steps at which time there were still over 100

interior grains. We ignored the first couple of time

steps (where we hypothesize the average grain
volume size distribution was unduly influenced by

the initial grain placement algorithm) and fit the
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remaining data with a linear and non-linear fit.

The data and fits are shown in Fig. 4. RMS fit

error for the simple linear fit is 5.81e)4 whereas

the RMS fit error for the non-linear fit is 4.88e)4.
The superiority of the non-linear fit to a 3/2 power
agrees with predictions of [16]. However, it must

be stated that larger data sets of >5000 grains

would provide a more convincing demonstration

of grain growth self-similarity. The current 5000

grain data sets involve computational runs of ap-

proximately one-half million tetrahedra and rep-

resent approximately the largest problems we can

feasibly run on single-processor workstations.
Larger data sets await parallelization of the code.
6. Grain3D, LaGriT specifications

In Grain3D computations, the major portion of

the computational time (�90%) is used to move

the interfaces and the remaining 10% to evaluate

and update the mesh. Computational time varies

with the size of the problem and hardware used.

For example, each of the 19 simulations of Section

4 took on the order of 2 h on a DEC alpha
workstation.

Grain3D is written entirely in FORTRAN 77.

LaGriT is written primarily in FORTRAN 77, but

contains a few FORTRAN 90 modules and an

I/O package and memory manager written in C.

LaGriT is available for UNIX and LINUX plat-

forms. The user manual, examples, and in-

formation on obtaining LaGriT are found at
http://www.t12.lanl.gov/home/lagrit. To obtain

Grain3D, contact the authors.
7. Conclusions

We have used a combination of a 3-D grain

evolution code Grain3D and a 3-D grid generation

and optimization code LaGriT to simulate mi-

crostructure evolution in Al and have demon-

strated that our simulation results agree well with

experiment in columnar microstructures and with
the parabolic law of normal grain growth in fully

3-D microstructures.
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